
![1)\ \ y=\sqrt[5]{sin^4x-cos\sqrt{x}}\\\\y'=\dfrac{1}{5}\cdot \Big(sin^4x-cos\sqrt{x}\Big)^{-\frac{4}{5}}\cdot \Big(4sin^3x\cdot cosx+sin\sqrt{x}\cdot \dfrac{1}{2\sqrt{x}}\Big)](/tpl/images/1789/7194/63aae.png)



Всё решается очень просто. Самое главное правильно сгруппировать слагаемые:
sinx+sin2x+sin3x=0
(sinx+sin3x)+sin2x=0
То выражение, что получилось в скобках раскладывается на множители по известной формуле:
sin a+sin b=2*sin (a+b)/2*cos(a-b)/2, поэтому (так как преобразования простые, то некоторые действия пропускаю)
2*sin2х*cosх+sin2x=0
sin2x(2cosx+1)=0
Осталось решить два простых тригонометрических уравнения:
sin2x=0 и cosx=-1/2
Первое уравнение решается просто: х=pi*n/2
Второе уравнение решается по формуле тригонометрии:
cosx=a, x=(+-)arccosa+2*pi*n
pi-это знаменитое число 3,14159
n-любое целое число
Вот и всё решение.