Не выполняя построений: а) найти координаты точек пересечения графика функции у = 0,3х - 5 с координатными осями; б) найти координаты точек пересечения графиков функций у = -12х + 23 и у = 13х + 73.
Функцию (х+3)(х+1) проще исследовать после преобразования: (х+3)(х+1) = х²+3х+х+3 = х²+4х+3 - это уравнение параболы. Результаты исследования графика функции
Область определения функции. ОДЗ: -00<x<+00
Точка пересечения графика функции с осью координат Y:График пересекает ось Y, когда x равняется 0: подставляем x=0 в x^2+4*x+3.
Результат: y=3. Точка: (0, 3) Точки пересечения графика функции с осью координат X:График функции пересекает ось X при y=0, значит нам надо решить уравнение:x^2+4*x+3 = 0 Решаем это уравнение и его корни будут точками пересечения с X: x=-3.0. Точка: (-3.0, 0) x=-1.0. Точка: (-1.0, 0) Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=2*x + 4=0 (Производную находим , a уравнение решаем ) Решаем это уравнение и его корни будут экстремумами:x=-2.0. Точка: (-2.0, -1.0) Интервалы возрастания и убывания функции:Найдем интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим на ведет себя функция в экстремумах при малейшем отклонении от экстремума:Минимумы функции в точках:-2.0 Максимумов у функции нету Возрастает на промежутках: [-2.0, oo) Убывает на промежутках: (-oo, -2.0] Точки перегибов графика функции:Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции, + нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=2=0 - нет перегибов. Вертикальные асимптоты Нету Горизонтальные асимптоты графика функции:Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим :lim x^2+4*x+3, x->+oo = oo, значит горизонтальной асимптоты справа не существует lim x^2+4*x+3, x->-oo = oo, значит горизонтальной асимптоты слева не существует Наклонные асимптоты графика функции:Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы :lim x^2+4*x+3/x, x->+oo = oo, значит наклонной асимптоты справа не существуетlim x^2+4*x+3/x, x->-oo = -oo, значит наклонной асимптоты слева не существует Четность и нечетность функции:Проверим функцию четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:x^2+4*x+3 = x^2 - 4*x + 3 - Нет x^2+4*x+3 = -(x^2 - 4*x + 3) - Нет - значит, функция не является ни четной ни нечетной
х- скорость гр авто ,тогда( х+10 ) - скор. легкового авто .Путь по условию =150 км Найдем время Тгр.=150./х Тлег.=150/(х+10) Но по условию время грузового на 1/2 часа больше легкового составляем уравнение 150/x-150/(x+10)=1/2 общий знаменатель 2х(х+10) 150*2(x+10)-150*2x-x(x+10)=0 знаменатель 2х(х+10)не =0 поэтому 0=числитель т.к. вся дробь =0 решаем наше уравнение 300(x+10)-300x-x^2-10x=0 300x+3000-300x-x^2-10x=0 -x^2-10x+3000=0 (*-1) x^2+10x-3000=0 D=100+4*3000=100+12000=12100 VD=+-110 x1=-10-110/2<0 не уд. одз х2=-10+110.2=50
я не знаю такое извини
Объяснение: