1.Найти экстремумы функций:
1) f(x)=х^3-х^2-х +2 2) f(x)= (8 -7х)*е^х
2.Найти интервалы возрастания и убывания функции f(x)=х^3-х^2-х +2
1
1)f`(x)=3x²-2x-1=0
D=4+12=16
x1=(2-4)/6=-1/3
x2=(2+4)/6=1
+ _ +
(-1/3)(1)
max min
ymax=-1/27-1/9+1/3+2=(-1-3+9+54)/27=59/27
ymin=1-1-1+2=1
2)f`(x)=-7e^x+(8-7x)e^x=e^x*(-7+8-7x)=0
1-7x=0
x=1/7
+ _
(1/7)
max
ymax=(8-1)*e^(1/7)=e^(1/7)
2
f`(x)=3x²-2x-1=0
D=4+12=16
x1=(2-4)/6=-1/3
x2=(2+4)/6=1
+ _ +
(-1/3)(1)
возр убыв возр
3
смотреть 1
x=-1/3∈[-1;3/2]
x=1∈[-1;3/2]
y(-1)=-1-1+1+2=1
y(-1/3)=59/27 наиб
4
y(1)=1
y(3/2)=27/8-9/4-3/2+2=(27-27-12+16)/8=1/2 наим
5
f`(x)=3x²-2x-1
f``(x)=6x-2 прямая проходит через точки (0:-2) и (1;4)
у³ - 4 + 2у - 2у² = у²(у - 2) + 2(у - 2) = (у² + 2)(у - 2)
7с² - с - с³ + 7 = с²(7 - с) + (7 - с) = (с² + 1)(7 - с)
х³ + 28 - 14х² - 2х = х(х² - 2) - 14(х² - 2) = (х - 14)(х² - 2)
16ab² + 5b²c + 10c³ + 32ac² = 16a(b² + 2c²) + 5c(b² + 2c²) = (16a + 5c)(b² + 2c²)
20n² - 35a - 14an + 50n = 10n(2n + 5) - 7a(2n + 5) = (10n - 7a)(2n + 5)
40a³bc + 21bc - 56ac² - 15a²b² = 5a²b(8ac - 3b) - 7c(8ac - 3b) = (5a²b - 7c)(8ac - 3b)
16xy² - 5y²z - 10z³ + 32xz² = 16x(y² + 2z²) - 5z(y² + 2z²) = (16x - 5z)(y² + 2z²)