Объяснение:
1. Преобразовать выражение в многочлен:
а) (2 – a)²=4-4а+а² квадрат разности
б) (n – 8)∙(n + 8)=n²-64 разность квадратов
в) (7b + 3x)²=49b²+42bx+9x² квадрат суммы
г) (2a + 3b)∙(3b – 2a)=9b²-4a² разность квадратов
2. Разложить на множители:
а) 16 – t²=(4-t)(4+t) разность квадратов
б) x² +10xy + 25y²=(x+5y)²=(x+5y)(x+5y) квадрат суммы
в) 0,0009 b² – 1=(0,03-1)(0,03+1) разность квадратов
3. Упростить выражение:
(b – 8)² – (64 – 16b) (b + 2) + (х – 1)(х + 1)=
=b²-16b+64-(64b+128-16b²-32b)+(x²-1)=
=b²-16b+64-(32b+128-16b²)+(x²-1)=
=b²-16b+64-32b-128+16b²+x²-1=
=17b²+x²-48b-65
4. Решить уравнение:
(4 - 2x)² = x(2,5 + 4x)
16-16x+4x²-2,5x-4x²=0
-18,5x= -16
x= -16/-18,5
x=32/37
При проверке левая часть уравнения равна правой, равна
5 и 211/1369.
где х, y - некоторые натуральные числа
Предположим что
тогда из второго соотношения (2) следует что
где k - некоторое натуральное число
откуда
а значит число |16a-9b| сложное если
и
Рассмотрим варианты
1)
что невозможно - два последовательных натуральных числа не могут быть квадратами натуральных чисел
(доказательство єтого факта
=>x=1; y=0
)
2)
=> k - ненатуральное -- невозможно
3)
=> k - ненатуральное - невозможно
тем самым окончательно доказали,что исходное утверждение верно.
Случай когда
Учитывая симметричность выражений a+b=b+a, ab=ba
доказывается аналогично.
Доказано