: если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором
. С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения
, два произвольных числа, но
. Пусть мы имеем функцию
, тогда вычисляем значения функции в этих двух точках, имеем
и
, так вот, если
, тогда функция возрастающая, если же
, то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1)
, т.е. функция возрастающая. А вот задание с
не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной)
. Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка):
, функция возрастает, что и требовалось доказать.
1. √х = 1 (1)
Выражение под корнем всегда должно быть неотрицательным, значит, х ≥ 0. Теперь возводим в квадрат обе части уравнения (1):
х = 1, смотрим на неравенство, х = 1 ≥ 0, значит, х = 1 – решение уравнения.
2. √х = -х - 2 (2)
Делаем то же самое. Выражение под корнем должно быть неотрицательным, но также в правой части уравнения (2) есть переменная, и правая часть тоже принимает разные значения, но извлечение корня из неотриц. выражения – так же неотриц. значение. Поэтому нужно, чтобы два условия выполнялись одновременно, т.е. нужно составить систему неравенств:
х ≥ 0
-х - 2 ≥ 0 (все это в системе)
Отсюда:
х ≥ 0
х ≤ -2 (в системе)
Могут ли эти условия выполняться одновременно? Т.е. есть ли такой х = числу, которое больше нуля и меньше -2? Такого числа не существует, значит, решения уравнени не сущ., следует, х принадлежит пустому множеству.