Объяснение:
а) S₅=8·(1-(1/2)⁵)/(1 -1/2)=8·(1 -1/32)/(2/2 -1/2)=8·(32/32 -1/32)/(1/2)=8·31·2/32=16·31/32=31/2=15,5
б) S₇=5·(1-2⁷)/(1-2)=5·(1-128)/(-1)=5·127=635
в) bₙ=b₁·qⁿ⁻¹
b₁+b₅=51; b₁+b₁q⁴=51; b₁(1+q⁴)=51
b₂+b₆=102; b₁q+b₁q⁵=102; b₁q(1+q⁴)=102
102/51=2; 2b₁(1+q⁴)=2·51; 2b₁(1+q⁴)=102
2b₁(1+q⁴)=b₁q(1+q⁴)
q=2
b₁=51/(1+q⁴)=51/(1+2⁴)=51/(1+16)=51/17=3
S₁₀=3·(1-2¹⁰)/(1-2)=3·(1-1024)/(-1)=3·1023=3069
г) bₙ=b₁·qⁿ⁻¹
b₁q-b₁=18; b₁(q-1)=18
b₁q³-b₁q²=162; b₁q²(q-1)=162
162/18=27/3=9; 9b₁(q-1)=9·18; 9b₁(q-1)=162
9b₁(q-1)=b₁q²(q-1)
q²=9
q₁=-3; q₂=3
При q₁=-3:
b₁=18/(q-1)=18/(-3-1)=18/(-4)=-9/2=-4,5
S₅=-9/2 ·(1-(-3)⁵)/(1-(-3))=-9/2 ·(1+243)/(1+3)=-9/2 ·244/4=-9/2 ·61=-549/2=-274,5
При q₂=3:
b₁=18/(3-1)=18/2=9
S₅=9·(1-3⁵)/(1-3)=9·(1-243)/(-2)=9·(-242)/(-2)=9·121=1089
ответ: S₅=-274,5 при q₁=-3; S₅=1089 при q₂=3.
Объяснение:
а) S₅=8·(1-(1/2)⁵)/(1 -1/2)=8·(1 -1/32)/(2/2 -1/2)=8·(32/32 -1/32)/(1/2)=8·31·2/32=16·31/32=31/2=15,5
б) S₇=5·(1-2⁷)/(1-2)=5·(1-128)/(-1)=5·127=635
в) bₙ=b₁·qⁿ⁻¹
b₁+b₅=51; b₁+b₁q⁴=51; b₁(1+q⁴)=51
b₂+b₆=102; b₁q+b₁q⁵=102; b₁q(1+q⁴)=102
102/51=2; 2b₁(1+q⁴)=2·51; 2b₁(1+q⁴)=102
2b₁(1+q⁴)=b₁q(1+q⁴)
q=2
b₁=51/(1+q⁴)=51/(1+2⁴)=51/(1+16)=51/17=3
S₁₀=3·(1-2¹⁰)/(1-2)=3·(1-1024)/(-1)=3·1023=3069
г) bₙ=b₁·qⁿ⁻¹
b₁q-b₁=18; b₁(q-1)=18
b₁q³-b₁q²=162; b₁q²(q-1)=162
162/18=27/3=9; 9b₁(q-1)=9·18; 9b₁(q-1)=162
9b₁(q-1)=b₁q²(q-1)
q²=9
q₁=-3; q₂=3
При q₁=-3:
b₁=18/(q-1)=18/(-3-1)=18/(-4)=-9/2=-4,5
S₅=-9/2 ·(1-(-3)⁵)/(1-(-3))=-9/2 ·(1+243)/(1+3)=-9/2 ·244/4=-9/2 ·61=-549/2=-274,5
При q₂=3:
b₁=18/(3-1)=18/2=9
S₅=9·(1-3⁵)/(1-3)=9·(1-243)/(-2)=9·(-242)/(-2)=9·121=1089
ответ: S₅=-274,5 при q₁=-3; S₅=1089 при q₂=3.
22*p + 14 = 17*q + 9 ;
22*p - 17*q + 5 = 0; решаем последнее ур-е, как ур-е в целых числах, частным решение является (-1; -1)
22*(-1) - 17*(-1) +5 = 0; вычитаем последние 2 равенства:
22*(p+1) - 17*(q+1) = 0;
22*(p+1) = 17*(q+1);
т.к. 22 и 17 взаимно просты, то (q+1) делится нацело на 22, а (p+1) делится нацело на 17;
q+1 = 22*A; p+1 = 17*B;
22*17B = 17*22*A; A=B = t;
q= 22*t - 1;
p= 17*t - 1;
Наименьшее неотрицателные значения p и q , достигаются при t=1;
q=21;
p=16;
x = 22*16 + 14=366;
x = 17*21+ 9=366;
Пусть это чилос х.
Тогад по первому условию:
х=13k+10, где k - какое то натуральное число,
и по второму условию:
х=8l+2, где l - какое то натуральное число.
Для начала сделаем оценку:
х<1000
13k+10<1000
13k<990
k<77
Теперь приравниваем те два равентва:
13k+10=8l+2
13k+8=8l
13k=8(l-1)
Правая часть равенства делится на 8, значит, и левая тоже. Т.к. 13 не кратно 8, то k делится на 8.
Самое большое число k<77 и кратное 8, это k=72
Подставляем в равентсво и получаем, что х=946
Проверкой убеждаемся, что оно подходит.