Решение: Обозначим время до встречи автобусов за t, -cкорость V1 первого автобуса равна: V1=132/(t+50/60) -cкорость второго автобуса равна: V2=132/(t+1 12/60) Скорость сближения автобусов равна: 132/(t+50/60)+132/(t+1 12/60)=132/t 132/(t+5/6)+132/(t+1,2)=132/t приведём уравнение к общему знаменателю (t)*(t+5/6)*(t+1,2) t*(t+1,2)*132+t*(t+5/6)*132=(t+5/6)*(t+1,2)*132 132t²+158,4t+132t²+110t=(t²+5/6*t+1/2t+1)*132 132t²+158,4t+132t²+110t=132t²+110t+158,4t+132 132t²+158,4t+132t²+110t-132t²-110t-158,4t-132=0 132t²-132=0 132t²=132 t²=132/132 t²=1 t=√1 t=1 Отсюда: -скорость первого автобуса равна: V1=132/(1+50/60)=132/(1+5/6)= =132/(11/6)=72(км/час) -скорость второго автобуса равна: V2=132/(1+1 12/60)=132/(1+1,2)=132/2,2=60(км/час)
ответ: скорость первого автобуса 72км/час; скорость второго автобуса 60км/час
Вот накалякал. Разбирайся :)
xy/(x+y) = 5
xz/(x+z) = 7
yz/(y+z) = 9
xy = 5x + 5y
xz = 7x + 7z
yz = 9y + 9z
x(y-5) = 5y
x = 5y/(y-5)
5yz/(y-5) = 35y/(y-5) + 7z
5yz = 35y + 7z * (y-5)
5yz = 35y + 7yz - 35z
2yz + 35y = 35z
y(2z + 35) = 35z
y = 35z/(2z + 35) = z/(2z/35 + 1)
35z^2/(2z + 35) = 315z/(2z + 35) + 9z
35z^2 = 315z + 9z*(2z + 35)
35z^2 = 315z + 18z^2 + 315z
17z^2 = 630z
z=630/17
y = 35*630/(2*630/17 + 35)/17 = 35*630/(1260 + 595) = 22050/1855 = 630 / 53
x = 5*630/(630/53 - 5)/53 = 5*630/((630/53 - 5)*53) = 5*630/365 = 630/73