Разберем по частям, начнем с простого: Квадратный корень из 81 естественно равен 9: √81=9; Далее разберемся с первым числом, имеем: Знаменатель в степени числа всегда показывает какой у нас корень, в данном случае - корень квадратный, а квадратный корень, как известно записывается так: Следовательно, у нас идет квадратный корень из девяти в кубе: Квадратный корень из 729 извлекается, это 27. Теперь второе число: В знаменателе степени стоит 3, то есть, корень кубический. Выглядит так: То бишь, если квадратный корень из 729 равен 27, то теперь из 27 находим квадратный корень, чтобы найти кубический корень из 729. Получаем 9. В итоге, складывая: 27+9+9=45.
Замена:x^2+3x=t, тогда: (t+1)(t-3)>=5, значит: t^2-2t-8=0. D=4+32=36. t1=(2+6)/2=4, t2=-2. (t+2)(t-4)>=0. Получили, что t принадлежит от минус бесконечности до минус двух и от четырех до плюс бесконечности. Обратная замена дает два случая: ПЕРВЫЙ: x^2+3x<=-2, тогда: x^2+3x+2<=0, угадывая корни по теореме Виета имеем: (x+1)(x+2)<=0, тогда: х принадлежит отрезку [-2; -1]. ВТОРОЙ: x^2+3x>=4, значит: x^2+3x-4>=0, угадав корни имеем: (x+4)(x-1)>=0, тогда х принадлежит от минус бесконечности до минус 4 включительно и от единицы включительно до плюс бесконечности. ОТВЕТ: х принадлежит (минус бесконечность; -4] U [-2;-1] U [1; плюс бесконечность).