10000000000000000000000000
Объяснение:
а) 330
б)
в)
Объяснение:
Буду объяснять каждое задание по отдельности. , Согласен, предыдущие выкладки были неправильными. В силу недопонимания во мною, либо двоякостью постановки во Число сочетаний из x по n равно биномиальному коэффициенту
Сₓⁿ= знак равенства не очень ровно размещён относительно дроби.
5 студентов хотят ехать снизу, а 4 сверху. Размещаем их по пожеланию.
a) Если порядок размещения пассажиров как снизу, так и сверху не учитывается то нет их перестановок.
Разместив пятерых студентов снизу и четырёх сверху имеем 7 свободных мест на верхних и 4 на нижних полках. Далее, нужно разместить 11 студентов с расчётом того что не учитываем их перестановок. Значит кол-во комбинаций равно С₁₁⁷·С₄⁴==8·9·10·11÷(1·2·3·4)=330
Аналогично получим С₁₁⁴С₇⁷=330
С₄⁴ здесь не обязательно. Оставим его для определённости последующих решений.
ОДЗ:
Решаем каждое неравенство:
⇒ ⇒
⇒ ⇒
Подмодульные выражения обращаются в 0 в точках
и
Это точки делят числовую прямую на три промежутка.
Раскрываем знак модуля на промежутках:
(-∞;-4]
|x+4|=-x-4
|x|=-x
⇒ ⇒ x < 1
решение неравенства (-∞;-4]
(-4;0]
|x+4|=x+4
|x|=-x
⇒ ⇒ x < -2 или x > 1
решение неравенства (-4;-2)
(0;+∞)
|x+4|=x+4
|x|=x
⇒ ⇒ x > 1
решение неравенства (1;+∞]
Объединяем ответы трех случаев:
при
ОДЗ:
Решаем неравенство:
Два случая:
если основание логарифмической функции >1, то она возрастает и большему значению функции соответствует большее значение аргумента
⇒ ⇒
второе неравенство решаем на промежутках так:
(-∞;-4]
⇒ ⇒ ⇒ (-3;-1)
не принадлежат (-∞;-4]
на (-4;0]
⇒ ⇒ x < -5 или x > 1
не принадлежат (-4;0]
(0;+∞)
⇒ ⇒ ⇒
о т в е т этого случая
если основание логарифмической функции 0 < a < 1, то она убывает и большему значению функции соответствует меньшее значение аргумента
⇒ ⇒
второе неравенство решаем на промежутках так:
(-∞;-4]
⇒ ⇒ ⇒
(-∞;-3)U(1;+∞)
о т в е т. (-∞;-4]
на (-4;0]
⇒ ⇒ -5 < x < 1
о т в е т. (-4;0]
(0;+∞)
⇒ ⇒ ⇒
о т в е т этого случая
С учетом ОДЗ получаем окончательный ответ:
ответ будет сяу по Египетски