Не едит, а едет.
Пусть х - скорость второго.
Тогда х+20 - скорость первого.
240/х - время, потраченное на пробег вторым автомобилем.
240/(х+20) - время, потраченное на пробег первым автомобилистом.
Уравнение:
240/х - 240/(х+20) = 1
Умножаем каждый член уравнения на х(х+20):
240(х+20) - 240х = 1•х(х+20)
240х + 4800 - 240х = х^2 + 20х
х^2 + 20х - 4800 = 0
D = 20^2 -4•(-4800) =
= 400 + 1920 = 19600
√D= √(19600) = 140
х1 = (-20 -140)/2 = -160/2=-80 км/ч - не подходит, поскольку скорость - величина положительная.
х2 = (-20+140)/2 = 120/2= 60 км/ч - скорость второго автомобиля.
х+20= 60+20 = 80 км/ч - скорость первого автомобиля.
ответ: 80 км/ч
F - первообразная для f, если f = F'. Но так как производная от суммы - это сумма производных, и производная от числа равна нулю, то можно написать f = F' = (F+C)', где С - любое число.
То есть первообразная - это не какая-то одна функция, это класс функций. Для всех разных чисел С - будет разная первообразная F + C, и производная от каждой из них равна f.
У вас в задаче табличные вещи, поэтому гляньте в табличке первообразных.
В общем, первообразная будет
F(х) = 4x + sin(x) + C
Надо, что б если подставить вместо икса П/6, F получилась равной П.
sin(П\6) = 1/2, так как это синус 30 градусов
Получается равенство
П = 4*П\6 + 1\2 + С
6П = 4П+3 + 6С
С = (2П-3)\6
значит F = 4x + sin(x) + (2П-3)/6