ответ:1) х^2 + 5х = 0;
х * (х + 5) = 0.
Приравняем каждый множитель к нулю:
х = 0;
х + 5 = 0;
х = -5.
2) х^2 - 9 = 0;
х^2 = 9;
х = √9;
х = ±3.
3) 2х^2 - 11 = 0;
2х^2 = 11;
х^2 = 11 : 2;
х^2 = 5,5;
х = √5,5.
4) х^2 + 12х + 36 = 0.
D = b^2 - 4ac = 144 - 4 * 1 * 36 = 0.
D = 0, уравнение имеет один корень.
х = -b/2a = -12/2 = -6.
5) x^2 - 6x + 9 = 0.
D = b^2 - 4ac = 36 - 4 * 1 * 9 = 0.
x = -b/2a = 6/2 = 3.
6) x^2 + 4x + 3 = 0.
D = b^2 - 4ac = 16 - 4 * 1 * 3 = 4.
D > 0, уравнение имеет два корня.
х1 = (-b + √D)/2a = (-4 + 2)/2 = -1.
x2 = (-b - √D)/2a = (-4 - 2)/2 = -3.
Объяснение:
Метод интервалов позволяет решить его за пару минут.В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.Метод интервалов основан на следующем свойстве дробно-рациональной функции.Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида . Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.Эти точки разбивают ось на N промежутков.Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным — либо «плюс», либо «минус».