Вопрос не очень понятен, но вот все, что произошло с прямоугольником: Стороны были равны n и 6n . После увеличения первой и уменьшения второй первая стала 3*n= 3n, и вторая 6:2n= 3n. то есть получился квадрат со стороной 3n Периметр был (n+6n)*2 =14n, стал 4*3n=12n
Площадь прямоугольника была n*6n =6n^2, а стала 3n*3n=9n^2, то есть площадь увеличилась в полтора раза
Если же вопрос стоит тоько о площажи, то изменеие ее можно посчитать как произведение изменений сторон, то есть S2 = S1*3/2 = 1.5 S1
Найдем сначала уравнение секущей:
Она проходит через две точки:х1=-1, у1 = 2*(-1)^2 = 2
и х2 = 2, у2 = 2*2^2 = 8
Ищем уравнение секущей в виде: y=kx+b
Подставим сюда две наши точки и решим систему, найдем k:
-k+b=2
2k+b=8 Вычтем из второго первое: 3k = 6, k= 2.
Наша искомая касательная должна быть параллельна секущей, значит имее такой же угловой коэффициент. k=2
Найдем точку касания, приравняв производную нашей ф-ии двум:
Y' = 4x = 2
x = 1/2
Уравнение касательной к ф-ии в т.х0:
у = у(х0) + y'(x0)(x-x0)
Унас х0 = 1/2, у(1/2) = 2*(1/4) = 1/2, y'(1/2)= 2.
Тогда получим:
у = 1/2 + 2(х - 1/2)
у = 2х -0,5 - искомое уравнение касательной.