1)ОДЗ х2-1 не =0, т.е. (х-1) не =0 и (х+1) не=0, т.е. х не =+-1
Дробь=0, когда числитель=0,т.е. х2-3х+2=0
D=9-8-1, х1=(3+1)/2 х1=2, х2=(3-1)/2 х2=1 этот корень не входит в ОДЗ
ответ: х=2
2) х2-4х+3=0
Д=16-12=4
х1=(4+2)/2 х1=3
х2=(4-2)/2 х2=1
х2+9х=0
х(х+9)=0
х1=0 х2=-9
7х2-х-8=0
Д=1+4*7*8=225
х1=(1+15)/14 х1=1 1/7
х2=(1-15)/14 х2=-1
2х2-50=0
2(х2-25)=0
(х-5)*(х+5)=0
х1=5 х2=-5
3) у2-9у-2=0, ведь это числитель дроби, у которой знаменатель7? Тогда решаем так:
Д=81+8=89
у1=(9+корень из 89)/2
у1=(9-корень из 89)/2
он равен 0 когда хотя бы один множитель равен 0
т.е m*(m+2)²*n*(n-5) =0 при m=0
n=0
m+2=0 ⇒ m=-2
n-5=0 ⇒ n=5
⇒ОДЗ m≠0; n≠0 ; m≠-2; n≠5
дробь равна 0 ,когда числитель равен 0
аналогично ищем корни (3m+18)(3n²-3)=0 если
3*(m+6)*3(n²-1)=0
9*(m+6)*(n²-1)=0
m+6=0⇒m=-6
n²-1=0 ⇒n=1; и n=-1
все полученные корни удовлетворяют ОДЗ