В решении.
Объяснение:
Пользоваться этими формулами:
D=b²-4ac = √D=
х₁=(-b-√D)/2a
х₂=(-b+√D)/2a
1. Решить уравнения:
1) x² +8x-13 = 0;
D=b²-4ac = 64+52=116 √D= √4*29 = 2√29;
х₁=(-b-√D)/2a
х₁=(-8 -2√29)/2
х₁= -4 - √29;
х₂=(-b+√D)/2a
х₂=(-8 + 2√29)/2
х₂= -4 + √29.
2) 2x²- 4x-17 = 0;
Разделить уравнение на 2 для упрощения:
x²- 2x - 8,5 = 0;
D=b²-4ac = 4 + 34 = 38 √D= √38 = √4*9,5 = √4*19/2 = 2√19/2;
х₁=(-b-√D)/2a
х₁=(2-2√19/2)/2
х₁=1-√19/2; 19/2 под корнем;
х₂=(-b+√D)/2a
х₂=(2+2√19/2)/2
х₂=1+√19/2; 9/2 под корнем;
3) 9x² +42x+49 =0;
D=b²-4ac = 1764 - 1764 = 0 √D= 0
х=(-b±√D)/2a
х= -42/18
х= -7/3.
4) x² -10x+37 = 0;
D=b²-4ac = 100 - 148 = -48
D < 0
Уравнение не имеет действительных корней.
5) (3x+2)(x-4)=5;
Раскрыть скобки, привести подобные члены:
3х² - 12х + 2х - 8 - 5 = 0
3х² - 10х - 13 = 0
D=b²-4ac = 100 + 156 = 256 √D= 16
х₁=(-b-√D)/2a
х₁=(10-16)/6
х₁= -6/6
х₁= -1;
х₂=(-b+√D)/2a
х₂=(10+16)/6
х₂=26/6
х₂=13/3.
Обозначим наше число как abcdefg. Счастливое число - это такое число, для которого выполняется условие b+d+f = a+c+e+g (*). Рассмотрим каждое предположение, и запишем для него соответствующее уравнение:
а) a<b<c<d<e<f<g => b+d+f < c+e+g < а+c+e+g => условие (*) не может быть выполнено
б) a>b>c>d>e>f>g => b+d+f < а+c+e < а+c+e+g => условие (*) не может быть выполнено
в) 7b7d7f7 => Если число счастливое, то должно выполнятся условие b+d+f = 7+7+7+7 = 7*4 = 28, но b+d+f <= 3*9 =27 => условие (*) не может быть выполнено
г) abc1cba => Если число счастливое, то должно выполнятся условие b+1+b = a+c+c+a => 2b+1 = 2(a+c) => нечетное_число = четное_число => условие (*) не может быть выполнено
д) abc2cba => Если число счастливое, то должно выполнятся условие b+2+b = a+c+c+a => 2(b+1) = 2(a+c) => b+1 = a+c => b = a+c-1 => условие (*) может быть выполнено (возьмем, например, число 1332331 - это число "счастливое", т.к. 3+2+3 = 1+3+3+1).
Итак, из всех приведенных условий, для счастливого числа может выполнятся только условие д)
ответ: "счастливое" семизначное число может быть числом вида abc2cba, как указано в условии д)
Пусть х км/ч скорость второго автомобиля, тогда
х+10 км/ч - скорость первого
второй проедет весь путь за 300/х часов
первый - за 300/(х+10) часов
зная, что первый автомобиль приедет на 1 час быстрее, составляем уравнение:
не подходит по условию
(км/ч) - скорость второго автомобиля
50 + 10 = 60 (км/ч) - скорость первого.