На первую решение: Возьмем стороны прямоугольника за А и В, тогда периметр равен 2А+2В=22, а площадь - А*В=24. Выразим отсюда А=24/В. Подставим в периметр, тогда имеем 2*24/В+2В=22. Имеем квадратное уравнение: 2В^2-22В+48=0 Д=100 Корнями являются числа 3 и 8, это сторона В. Отсюда получим, что сторона А может быть равна 8 или 3 соответственно. На вторую решение: Пусть Х-собственная скорость катера. Тогда скорости по течению и против будут равны Х+3 и Х-3 соответственно. Отсюда получаем, что время движения катера по течению и против него равно 5/(Х+3)+12/(Х-3), и равно времени движения в стоячей воде с собственной скоростью 18/Х. Приравниваем. 5/(х+3)+12/(х-3)=18/х. Получается квадратное уравнение х^2-21х-162=0. Два корня являются решениями, но один из них отрицательный, следовательно х=27. ответ: собственная скорость катера - 27 км/ч.
Физический процесс протекает во времени, поэтому все физические формулы, описывающие явления материального мира во времени являются функциями, описывающими реальные физические процессы. В такие уравнения время входит в качестве переменного параметра, а не константы (как, например, в формуле для периода), либо входит опосредованно в другие величины, такие, например, как скорость, электрический ток и т.п. Некоторые уравнения описывают процессы и одновременно состояния, а поэтому не содержат непосредственно в себе параметра времени, а лишь показывают некоторые частные состояния системы, как, например уравнение Менделеева-Клайперона (уравнение идеального газа).
Уравнение равномерного движения – это функция, описывающая реальный физический процесс равномерного движения:
;
Уравнение равномерного прямолинейного движения – это функция, описывающая реальный физический процесс прямолинейного движения в векторном виде:
;
Следствие для скорости из уравнения определения ускорения – это функция, описывающая реальный физический процесс равномерного изменения скорости:
либо в векторном виде: ;
Уравнение равнопеременного движения – это функция, описывающая реальный физический процесс равнопеременного движения:
либо в векторном виде: ;
Второй Закон Ньютона – это функция, описывающая реальный физический процесс динамики движения:
либо в векторном виде: ;
Уравнение равномерного движения по окружности – это функция, описывающая реальный физический процесс равномерного движения по окружности:
;
Уравнение движения при гармонических колебаниях – это функция, описывающая реальный физический процесс гармонического колебания:
;
Следствие для скорости из уравнения гармонических колебаний – это функция, описывающая реальный физический процесс изменения скорости в гармоническом колебании:
;
Следствие для ускорения из уравнения гармонических колебаний – это функция, описывающая реальный физический процесс изменения ускорения в гармоническом колебании:
;
Следствие для энергии из уравнения определения теплоёмкости – это функция, описывающая реальный физический процесс нагревания:
где либо в удельном виде: ;
Следствие для энергии из уравнения определения теплоты плавления и кристаллизации – это функция, описывающая реальный физический процесс плавления и кристаллизации:
;
Следствие для энергии из уравнения определения теплоты парообразования и конденсации – это функция, описывающая реальный физический процесс парообразования и конденсации:
;
Следствие для энергии из уравнения определения теплоты горения – это функция, описывающая реальный физический процесс горения:
;
Уравнение идеального газа – это многопараметрическая функция, описывающая все физические процессы газов низких давлений:
;
Уравнения определения тока – это функция, описывающая реальный физический процесс движени заряженных частиц:
;
Закон Фарадея – это многопараметрическая функция, описывающая гальванический процесс:
где ;
Закон Ома – это функция, описывающая реальный физический процесс движения заряженных частиц в однородном проводнике:
;
Закон Джоуля-Ленца – это функция, описывающая реальный физический процесс превращения энергии в электрических цепях:
либо в мощностном виде: ;
Закон Ампера (Второй Закон Максвелла) – это функция, описывающая реальный физический процесс воздействия магнитного поля на проводник с током:
;
Закон Лоренца (Второй Закон Максвелла) – это функция, описывающая реальный физический процесс воздействия магнитного поля на движущуюся частицу:
;
Закон Фарадея-Ленца электромагнитной Индукции (Третий Закон Максвелла) – это функция, описывающая реальный физический процесс порождения вихревого электрического поля при изменении магнитного поля:
(0; - 1)
Объяснение:
Оскільки точки перетину з віссю ординат, то координати: (0;у)
0-у=1 ⇒ -у = 1 ⇒ у = -1, (0; - 1)