За 1 день они оба выполнять 2/3:4 = 2/12 = 1/6 всей работы. Пусть первый рабочий выполняет всю работу за x дней. Тогда второй рабочий выполнит всю работу за x+5 дней. За 1 день первый выполняет 1/x часть работы, а второй - 1/(x+5) часть работы. Вместе они выполнят 1/x+1/(x+5) = (2x+5)/x(x+5). И это равно 1/6.
Решение x=-3 отбрасываем, т.к. число дней не может быть отрицательным. Значит, самостоятельно первый рабочий выполнит всю работу за 10 дней. Второй рабочий - за 10+5=15 дней. Вместе - за 6 дней.
Найдем сначала уравнение секущей:
Она проходит через две точки:х1=-1, у1 = 2*(-1)^2 = 2
и х2 = 2, у2 = 2*2^2 = 8
Ищем уравнение секущей в виде: y=kx+b
Подставим сюда две наши точки и решим систему, найдем k:
-k+b=2
2k+b=8 Вычтем из второго первое: 3k = 6, k= 2.
Наша искомая касательная должна быть параллельна секущей, значит имее такой же угловой коэффициент. k=2
Найдем точку касания, приравняв производную нашей ф-ии двум:
Y' = 4x = 2
x = 1/2
Уравнение касательной к ф-ии в т.х0:
у = у(х0) + y'(x0)(x-x0)
Унас х0 = 1/2, у(1/2) = 2*(1/4) = 1/2, y'(1/2)= 2.
Тогда получим:
у = 1/2 + 2(х - 1/2)
у = 2х -0,5 - искомое уравнение касательной.