если 1/х+х целое (к=1), то (1/х+х)² тоже целое, но (1/х+х)²=1/х²+2+х² => 1/х²+х² целое (к=2) аналогично (1/х+х)³ тоже целое, но (1/х+х)³=1/х³+3(1/х+х)+х³ => 1/х³+х³ целое (к=3) Пусть 1/х^n+х^n целое для всех n≤к. Составим произведение двух целых чисел: (1/х^к+х^к)·(1/х+х) =1/х^(к+1)+х^(к-1)+1/х^(к-1)+х^(к+1) так как по предположению х^(к-1)+1/х^(к-1) целое, то 1/х^(к+1)+х^(к+1) тоже целое. т.о. если 1/х^к+х^к целое для к=1, то оно целое для всех целых к. Легко видеть что для -к и для к=0, оно тоже целое. не все поместилось Хотелось бы исправить решение Поэтому число значений к удовлетворяющих условию 2·2014+1=4029
2 часа 20 мин = 2 1/3 часа = 7/3 часа Пусть х - скорость катера. Тогда х/5 - скорость течения реки. х + х/5 - скорость катера, движущегося по течению реки. (х + х/5) • 7/3 = 42 5х/5 + х/5 = 42•3/7 6х/5 = 18 х = 18•5/6 х = 15 км/ч - собственная скорость катера. х/5 = 15 : 5 = 3 км/ч - скорость течения реки. х - х/5 - скорость катера, идущего против течения реки. х - х/5 = 15-3 = 12 км/ч - скорость катера, идущего против течения реки.
Проверка: 42:(15+3)=42:18 = 2 1/3 часа = 2 ч 20 мин - время, затраченное на путь по течению реки.
2 часа 20 мин = 2 1/3 часа = 7/3 часа Пусть х - скорость катера. Тогда х/5 - скорость течения реки. х + х/5 - скорость катера, движущегося по течению реки. (х + х/5) • 7/3 = 42 5х/5 + х/5 = 42•3/7 6х/5 = 18 х = 18•5/6 х = 15 км/ч - собственная скорость катера. х/5 = 15 : 5 = 3 км/ч - скорость течения реки. х - х/5 - скорость катера, идущего против течения реки. х - х/5 = 15-3 = 12 км/ч - скорость катера, идущего против течения реки.
Проверка: 42:(15+3)=42:18 = 2 1/3 часа = 2 ч 20 мин - время, затраченное на путь по течению реки.
(1/х+х)²=1/х²+2+х² => 1/х²+х² целое (к=2)
аналогично (1/х+х)³ тоже целое, но
(1/х+х)³=1/х³+3(1/х+х)+х³ => 1/х³+х³ целое (к=3)
Пусть 1/х^n+х^n целое для всех n≤к.
Составим произведение двух целых чисел:
(1/х^к+х^к)·(1/х+х) =1/х^(к+1)+х^(к-1)+1/х^(к-1)+х^(к+1)
так как по предположению х^(к-1)+1/х^(к-1) целое,
то 1/х^(к+1)+х^(к+1) тоже целое.
т.о. если 1/х^к+х^к целое для к=1, то оно целое для всех целых к.
Легко видеть что для -к и для к=0, оно тоже целое.
не все поместилось
Хотелось бы исправить решение
Поэтому число значений к удовлетворяющих условию 2·2014+1=4029