Хорошо, вам не объяснили толково что такое вообще математическая логика, но это на самом деле нормальный случай, сами дают и не знают, что дают. Давайте разберемся. Пусть некоторое A - утверждение. Будем называть утверждением некоторое предположение, которое характеризуется либо как истинное и тогда утверждение равняется единице, либо как ложное и тогда утверждение равняется нулю. В данном случае за утверждение принимается: A - предположение, говорящее, что Первая буква гласная. B - предположение, говорящее, что Последняя буква согласная. Немного об операциях в т.н. алгебре логики (термин сложный и его нужно разъяснять отдельно, делается это в курсе т.н. "высшей алгебры"). Это сложение (известное также как объединение в теории множеств) и умножение (пересечение). Здесь их называют логическое "ИЛИ" (дизъюнкция) и логическое "И" (конъюнкция). Раз уж речь идет об алгебре, то, конечно, имеем также логическое "НЕ". По аналогии с теорией множеств, это дополнение к какому-то операнду (а суть унарная операция, интересная вещь). Давайте запишем как нужно само выражение. -A∧-B (вместо минусов нужно черточку над буквой). Таблица истинности выглядит так: В наименованиях столбцов пишите A и B и ваше выражение третьим. Затем подставляете различные наборы значение A и B, A и B принимают только значения 0 и 1. Получаете соответственно 0 или 1. "НЕ" - значит, утверждение обращается - было 1, стало 0, и наоборот. "И" - дает 1 если оба операнда 1, иначе дает 0. "ИЛИ" - дает 0 если оба операнда 0, иначе дает 1. Вот и все. Заполняете и получаете нужное.
Исследовать функцию и построить график: Область определения: множество всех действительных чисел D(y)=R
Точки пересечения с осью Ох и Оу:
1.1 Точки пересечения с осью Ох
По формуле Кардано:
- точки пересечения с осью Ох
1.2 Точки пересечения с осью Оу (х=0):
- Точки пересечения с осью Оу.
Возрастания и убывания функции(критические точки): Первая производная: Приравняем производную функцию к нулю, чтобы найти критические точки......................
По т. Виета
___+___(1)_____-_____(3)___+___> возр убыв возр
Итак, функция возрастает на промежутке x ∈ (-∞;1)U(3;+∞), а убывает на промежутке - (1;3). В точке х = 1, функция имеет локальный максимум, а в точке х = 3 - локальный минимум.
Возможные точки перегиба: Вторая производная: Вторую производную приравняем к нулю - Точка перегиба
Вертикальные асимптоты: нет. Горизонтальные асимптоты: нет. Наклонные асимптоты: нет.
Соостветвенно анализу графика построим график.(Смотреть во вложении)