М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Vova50915091
Vova50915091
04.06.2022 23:34 •  Алгебра

Перевод периодических дробей в обыкновенные 1. 2, (3) = 2. 1, (33) = 3. 3,5 (6) = 4. 0, (66) =

👇
Ответ:

1)2,(3)

 1.х=2,(3)

 2.10х=23,(3)

 3.из второго вычитаем первое => 9х=21

 4.х=21/9=2, 1/3

2)1,(33)

 1.х=1,(33)

 2.100х=133,(33)

 3.2-1 =>90х=132

 4.132/90 = 1, 7/15

3)3,5(6)

 1.х=3,5(6)

 2.10х=35,(6)

 3.100х=356,(6)

 4.2-1 =>90х=321

 5.321/90 = 3, 51/90

4)0,(66)

 1.х=0,(66)

 2.100х=66,(66)

 3.99х=66

 4.66/99 = 6/9

4,8(25 оценок)
Открыть все ответы
Ответ:
pudgenamide
pudgenamide
04.06.2022

Решено верно :) надеюсь поймешь!

Объяснение:

Система решена точно правильно.

Получаем ответ: (4:5)

х=4 (1 слиток олова)

у=5 (1 слиток свинца)

Удачи, надеюсь

прощения за кривой почерк)

Система решена методом сложения.

Пояснение:

Ты должна в ОБОИХ уравнениях получить одинаковое число либо х либо у (я так решаю всегда).

В твоем случае я домножила 5у на -2у, а 2у на 5у.

Получили -10у и 10у! Обязательно должно быть одно отрицательное и одно положительное, чтобы их можно было убрать. (в твоем случае).

Ну, а дальше думаю, ты поняла)


Алгебра, решить системой уравнения
4,7(61 оценок)
Ответ:
polinabaysha
polinabaysha
04.06.2022

1)

ОДЗ:   x^2-x-6\geq0   ⇒      (x+2)(x-3)\geq 0   ⇒  x \in (-\infty; -2] \cup [3;+\infty)

(2^{x}-2)\cdot \sqrt{x^2-x-6} \geq 0      ⇔

(2^{x}-2)\cdot \sqrt{x^2-x-6} =0    или   (2^{x}-2)\cdot \sqrt{x^2-x-6} 0

(2^{x}-2)\cdot \sqrt{x^2-x-6} =0      ⇒     2^{x}-2=0   или   \sqrt{x^2-x-6} =0   ⇒

x=1   или    x=-2     или    x=3

x=1       не входит в ОДЗ

два корня    x=-2     или    x=3

(2^{x}-2)\cdot \sqrt{x^2-x-6} 0     при    x \in (-\infty; -2] \cup [3;+\infty)

\sqrt{x^2-x-6} 0,   тогда     2^{x}-20  ⇒     2^{x}2   ⇒     x 1

C учетом x \in (-\infty; -2] \cup [3;+\infty)  получаем ответ:  

\{-2\} \cup [3;+\infty)

2)

ОДЗ:   x^2-2x-8\geq0   ⇒      (x+2)(x-4)\geq 0   ⇒  x \in (-\infty; -2] \cup [4;+\infty)

(3^{x-2}-1)\cdot \sqrt{x^2-2x-8} \leq 0      ⇔

(3^{x-2}-1)\cdot \sqrt{x^2-2x-8} =0    или   (3^{x-2}-1)\cdot \sqrt{x^2-2x-6}

(3^{x-2}-1)\cdot \sqrt{x^2-2x-8} =0      ⇒     3^{x-2}-1=0   или   \sqrt{x^2-2x-8} =0   ⇒

x=2   или    x=-2     или    x=4

x=2       не входит в ОДЗ

два корня    x=-2     или    x=4

(3^{x-2}-1)\cdot \sqrt{x^2-2x-8}     при    x \in (-\infty; -2] \cup [4;+\infty)

\sqrt{x^2-2x-8} 0,   тогда     3^{x-2}-1  ⇒     3^{x-2}   ⇒     x-2

C учетом      x \in (-\infty; -2] \cup [4;+\infty)  получаем ответ:  

(-\infty;-2]\cup \{2\}

3)

\sqrt{6\cdot 3^{x}-2} 3^{x}+1

Так как     3^{x}+1 0         при любых х, возводим данное неравенство в квадрат:

6\cdot 3^{x}-2(3^{x})^2+2\cdot 3^{x}+1

(3^{x})^2-4\cdot 3^{x}+3

D=16-12=4

(3^{x}-1)(3^{x}-3)

1< 3^{x}

Показательная функция с основанием 3 возрастает

0 < x < 1

О т в е т. (0;1)

4)

\sqrt{2\cdot 5^{x+1}-1} 5^{x}+2

Так как     5^{x}+2 0         при любых х, возводим данное неравенство в квадрат:

2\cdot 5^{x+1}-1(5^{x})^2+4\cdot 5^{x}+4

5^{x+1}=5\cdot 5^{x}

(5^{x})^2-6\cdot 5^{x}+5

D=36-20=16

(5^{x}-1)(5^{x}-5)

1< 5^{x}

Показательная функция с основанием 5 возрастает

0 < x < 1

О т в е т. (0;1)

         

4,4(40 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ