1.
a) P=P₁+P₂+P₃=0,15+0,25+0,4=0,8 вероятность попадания в 1 из 3-х областей
б) 1-Р=1-0,8=0,2 вероятность промазать (т.к. событие противоположное)
2.
Посчитаем от обратного.
Всего 6*6=36 возможных события
6 вариантов выпадения одинакового числа очков.
6/36 =1/6 вероятность выпадения одинакового числа очков.
Р=1-1/6=5/6 вероятность выпадения разного числа очков
3.
6*6=36 возможных событий
Выпадение очков меньше 3:
{1; 2}, {2; 1} - 2 варианта
Р=2/36=1/18 вероятность выпадения очков меньше 3-х
4.
6*6=36 событий
{6:6} - 1 событие выпадет 2 шестерки
Р=1/36 вероятность, что выпадет 2 шестерки
5.
Более 3-х очков: 4, 5, 6
Менее 3-х очков: 1,2,3
Р=3/6*3/6=1/4 вероятность, что на первой кости выпало
более трех очков, а на второй — менее трех
6.
Вероятность, что выпадет шестерка:
1/6
Вероятность, что выпадут 3 шестерки подряд:
Р=1/6*1/6*1/6=1/216
b)
3
x
+3
x+2
<270
3
x
+3
2
∗3
x
<270
3
x
+9∗3
x
<270
10∗3
x
<270 ∣:10
3
x
<27
3
x
<3
3
x<3.
ответ: x∈(-∞;3).
h)
\4*4^x-2\geq 7*2^x\\4*(2^2)^x-7*2^x-2\geq 0\\4*2^{2x}-7*2^x-2\geq 0\\\
4∗4
x
−2≥7∗2
x
4∗(2
2
)
x
−7∗2
x
−2≥0
4∗2
2x
−7∗2
x
−2≥0
Пусть 2ˣ=t ⇒
\4t^2-7t-2\geq 0\\4t^2-8t+t-2\geq 0\\4t*(t-2)+(t-2)\geq 0\\(t-2)*(4t+1)\geq 0\\(2^x-2)*(4*2^x+1)\geq 0\\4*2^x+1 > 0\ \ \ \ \Rightarrow\\2^x-2\geq 0\\2^x\geq 2\\2^x\geq 2^1\\x\geq 1.\
4t
2
−7t−2≥0
4t
2
−8t+t−2≥0
4t∗(t−2)+(t−2)≥0
(t−2)∗(4t+1)≥0
(2
x
−2)∗(4∗2
x
+1)≥0
4∗2
x
+1>0 ⇒
2
x
−2≥0
2
x
≥2
2
x
≥2
1
x≥1.
ответ: x∈[1;+∞).
хватит бумаги для 15 букетов