Пусть х км/ч - собственная скорость катера, тогда (х + 2) км/ч - скорость катера по течению реки, (х - 2) км/ч - скорость катера против течения реки. Уравнение:
A*3^x - 12a + 4a^2 > 0 3^x > 0 при любом x ∈ R. Вынесем а за скобки. a*(3^x - 12 + 4a) > 0 1) При а = 0 будет 0 > 0 - этого не может быть ни при каком х. Решений нет. 2) При a < 0 будет 3^x + 4a - 12 < 0 3^x < 12 - 4a 12 - 4a > 0 при любом a < 0, 3^x > 0 при любом x, поэтому x < log3 (12 - 4a) 3) При a > 0 будет 3^x + 4a - 12 > 0 3^x > 12 - 4a = 4(3 - a) При a ∈ (0; 3) будет 4(3 - a) > 0, поэтому x > log3 (12 - 4a) При a >= 3 будет 4(3 - a) <= 0, поэтому 3^x > 4(3 - a) (отрицательного числа) при любом x. x ∈ R ответ: При a = 0 решений нет. При a ∈ (-oo; 0) x ∈ (-oo; log3 (12-4a)) При a ∈ (0; 3) x ∈ (log3 (12-4a); +oo). При a ∈ [3; +oo) x ∈ (-oo; +oo)
Пусть х км/ч - собственная скорость катера, тогда (х + 2) км/ч - скорость катера по течению реки, (х - 2) км/ч - скорость катера против течения реки. Уравнение:
24/(х+2) + 24/(х-2) = 3,5
24 · (х - 2) + 24 · (х + 2) = 3,5 · (х -2) · (х + 2)
24х - 48 + 24х + 48 = 3,5 · (х² - 2²)
48х = 3,5х² - 14
3,5х² - 48х - 14 = 0
D = b² - 4ac = (-48)² - 4 · 3,5 · (-14) = 2304 + 196 = 2500
√D = √2500 = 50
х₁ = (48-50)/(2·3,5) = (-2)/7 - не подходит, так как < 0
х₂ = (48+50)/(2·3,5) = 98/7 = 14
ответ: 14 км/ч.
Проверка:
24 : (14 - 2) + 24 : (14 + 2) = 3,5
24 : 12 + 24 : 16 = 3,5
2 + 1,5 = 3,5 (ч) - время, затраченное на путь туда и обратно