Пусть концентрация первого раствора кислоты составит х, а второго – у. Если смешать два этих раствора, получим раствор, который содержит 72 % кислоты (72:100=0,72). Значит, 100х+20у=0,72*(100+20) 100х+20у=0,72*120 100х+20у=86,4 (1 уравнение).
Если же смешать равные массы растворов, то получим раствор, который содержит 78 % кислоты (78%:100%=0,78). Масса второго равна 20 кг, значит и массу первого необходимо взять 20 кг. 20х+20у=0,78*(20+20) 20х+20у=0,78*40 20х+20у=31,2 (2 уравнение)
Решим систему неравенств (методом сложения): {100х+20у=86,4 {20х+20у=31,2 (*-1)
{100х+20у=86,4 +{-20x-20y=-31,2 =(100х+(-20х))+(20у+(-20у))=86,4+(-31,2) 80х=55,2 х=55,2:80 х=0,69=69% (масса кислоты, содержащаяся в первом сосуде – 100 кг) 0,69*100 кг=69 кг кислоты содержится в первом сосуде ответ: масса кислоты, содержащаяся в первом сосуде равна 69 кг.
S = b1/(1 - q)
У нас b1 = 8, q = 0,5, S = 8/(1 - 0,5) = 16
2) Арифметическая прогрессия
a(n) = a1 + d*(n - 1)
У нас a1 = 3, d = 4, n = 10, a(10) = 3 + 4*9 = 3 + 36 = 39
3) b1 = 9, q = -1/3, S = 9/(1 - 1/3) = 9/(2/3) = 9*3/2 = 13,5
4) Сумма арифметической прогрессии
S = (a1 + a(n))*n/2
a1 = 2, n = 102-2+1 = 101, a(101) = 102
S = (2 + 102)*101/2 = 52*101 = 5252
5) a1 = -3, d = -3, n = 25, a(25) = -3 - 3*24 = -3 - 72 = -75
6) a1 = 10, d = -2, n = 10, a(10) = 10 - 2*9 = 10 - 18 = -8
S(10) = (10 - 8)*10/2 = 2*10/2 = 10