v - знак квадратного корня.
v(3x-2)< =x одз: 3x-2> =0; x> =2/3
в левой части неравенства стоит квадратный корень,который принимает только неотрицательные значения,поэтому правая часть неравенства тем более должна быть неотрицательной: x> =0.
возведем обе части в квадрат:
3x-2< =x^2
3x-2-x^2< =0
x^2-3x+2> =0
x^2-3x+2=0
d=(-3)^2-4*1*2=1
x1=(3-1)/2=1; x2=(3+1)/2=2
++
с учетом одз: x e [2/3; 1] u [2; + беск.)
подробнее - на -
x-x1 y-y1
= x1=-1 x2=3 y1=8 y2=-4
x2-x1 y2-y1
x-(-1) y-8 x+1 y-8 x+1 y-8
= ⇔ = или =
3-(-1) -4-8 4 -12 1 -3
-3(x+1)=y-8 или y=-3x+5
y=kx+b
A(-1;8) ∈ y=kx+b ⇔ 8=k(-1)+b -k+b=8
и B(3;-4)∈ y=kx+b ⇔-4=k(3)+b ⇔ 3k+b=-4 ⇔4k=-12 k=-3
b=8+k=5
y=-3x+5
проверка
A(-1;8) и B(3;-4)∈ y=kx+b y=-3x+5
A(-1;8) 8=-3(-1)+5 верно
B(3;-4) -4=-3(3)+5 верно