Точки с координатами (-2;8) и (1;5)
Объяснение:
Первая функция
у= х²+4 (1)
Выразим у во второй функции:
х+у = 6 <=> у = 6-х (2)
Точка пересечения - точка, с некими координатами (х0;у0), которые принадлежат обоим графикам функций.
То есть нам надо найти такие х и у, для которых верно равенство 1 и 2.
Приравняем у в (1) и (2) функциях. Получим:
у = х²+4 = 6-х
Или
Найдем у для х=(-2) и х=1
Для этого подставим значение х в любую из 2х функций
При х = (-2)
у(-2) = 6-(-2) = 6+2 = 8
Следовательно одна из искомых точек имеет координаты:
(-2;8)
При х=1
у(1) = 6-1 = 5
Следовательно вьорая искомая точек имеет координаты:
(1;5)
ответ: (-2;8) и (1;5)
Объяснение:
1.а)6с
1.а)6с б)-15
2.a) 2a−6a 2 +4= 2a2(−3a+2)= a−3a+2
a) 2a−6a 2 +4= 2a2(−3a+2)= a−3a+2 b)\frac{- 7{x}^{3} + 14 {x}^{2} - 21x}{ - 7x} = \frac{ - 7x( {x}^{2} - 2x + 3) }{ - 7x} = x {}^{2} - 2x + 3b) −7x−7x 3
a) 2a−6a 2 +4= 2a2(−3a+2)= a−3a+2 b)\frac{- 7{x}^{3} + 14 {x}^{2} - 21x}{ - 7x} = \frac{ - 7x( {x}^{2} - 2x + 3) }{ - 7x} = x {}^{2} - 2x + 3b) −7x−7x 3 +14x 2 −21x = −7x−7x(x 2 −2x+3) =x 2 −2x+3
−2x+3) =x 2 −2x+3в)
−2x+3) =x 2 −2x+3в)\frac{ {9a}^{3} c -6 {a}^{2} {c}^{2} }{3 {a}^{2} {c}^{2} } = \frac{3 {a}^{2} {c}^{} (3 a - 2c)}{3a {}^{2} c {}^{2} } = \frac{3a - 2c}{c} то
3a 2 c 29a 3 c−6a 2 c 2 = 3a 2 c 23a 2 c (3a−2c)
23a 2 c (3a−2c)= c3a−2c
23a 2 c (3a−2c)= c3a−2c
3.на фотографии
2)log12 2+log12 72 = log 12 (2*72)= log12 (144)=2
3)log10 8+log10 125=log 10 (8*125)=log10 (1000)=3
4)log3 6+log3 1.5=log3 (6* 1.5) = log3 (9)=2