Ть опервый использование свойств арифметической прогрессии) Имеем конечную арифметическую прогрессию с первым членом -111, разностью арифметической прогрессии 1 (разница между двумя последовательными целыми числами) и суммой 339, нужно найти последний член данной прогрессии
- не подходит, количество членов прогрессии не может быть отрицательным ответ: 114
второй на смекалку) (так как слагаемые последовательные целые числа, и меньшее из них отрицательное, а сумма положительна, то последнее из них тоже положительное, иначе они б в сумме дали отрицательное число как сумму отрицательных числе, а не положительное)
далее -111+(-110)+.+0+1+2+...+110+111+112+...+х= (-111+111)+(-110+110)+(-99+99)+(-1+1)+0+112+113+114+.. + х= 0+0+0+....+0+0+112+113+114+..+х =112+113+..+х т.е каждому отрицательному найдется в "противовес" положительное, которое в сумме вместе с ним даст 0, и фактически наша сумма равна 112+113+...+х (*) так как наименьшее из слагаемых (*) трицифровое ,и наша сумма трицифровое число, то мы последовательно сравнивая суммы , найдем его очень быстро 112=112 112+113=225 - меньше 112+113+114=339 -- совпало значит искомое число х равно 114 ответ: 114
ответ: V1=24 км/ч, V2= 40 км/ч.
Объяснение:
Пусть скорость второго равна х км/ч.
Тогда первого будет х+16 км/ч.
Первый затратит на путь в 120 км - 120/(х+16) часов,
А второй - 120/х часов.
Разность во времени 2 часа.
Составим уравнение:
120/х - 120/(х+16)=2;
Найдем общий знаменатель: х(х+16), дополнительные множители:
(х+16, х и х(х+16)) .
120(х+16)-120х=2х(х+16);
120х+1920-120х=2х²+32х;
2х²+32х-1920=0; [:2]
x²+16x-960=0;
По теореме Виета
х1+х2=-16; х1*х2=960;
х1=24; х2= -40 - не соответствует условию задачи.
V2=24 км/ч - скорость второго мотоциклиста.
V1=x+16=24+16=40 км /ч