Нужно найти наименьшее натуральное число, которое при умножении на 2 даст полный квадрат, а при умножении на 3 - полный куб. Обозначим искомое число за . Любое число можно представить в виде произведения простых множителей. Запишем: , где - некоторые натуральные числа. По условию, число является полным квадратом, значит и - четные числа, а - полный квадрат. Аналогично, число является полным кубом, значит и делятся на 3, а - полный куб. Легко видеть, что наименьшие возможные значения это , значит .
Необходимо начертить единичную окружность и заставить точку "бегать" по окружности: 3П - это 1,5 круга, соответствует углу 180 градусам. Точка будет иметь координаты (-1,0). По определению sin и cos это и есть их значения: sin3П=0, cos3П=-1. Аналогично: sin 4п=0, сos4П =1 sin3,5п=1, сos3,5П=0; sin5/2П=1, cos 5/2П=0 sinПк=0 сosПк=1 (если к -четное ) и cosПк =-1 если к- нечетное число (2к+1) - это формула нечетного числа, к примеру 3, 5, 7, 9 и т.д. Следовательно, sin(2к+1)П=0, cos(2к+1)П =-1..
Обозначим искомое число за
По условию, число
Легко видеть, что наименьшие возможные значения