Ну тут все просто) Так как это не система, мы можешь подобрать любые числа, подчиняющиеся данным условиям) а) x=3, y=1 Проверка: 3-1=2 и 3+1=не равняется 8, не является решением второго, но является решением первого уравнения б) x=6, y=2 Проверка: 6-2=не равняется двум и 6+2=8, не является решением первого, но является решением второго в) x=5, y=3 Проверка: 5-3=2 и 5+3=8, являются решением и первого, и второго уравнения г) x=8, y=2 Проверка: 8-2=не равняется двум и 8+2=не равняется 8, значит не является решением ни первого уравнения ни второго
(m) отрицательным быть не может ---> для m < 0 решений НЕТ для m >= 0 возможны два варианта: x^2 + 3x + (4-m) = 0 или x^2 + 3x + (4+m) = 0 D= 9-4(4-m) = 4m - 7 D= 9-4(4+m) = -4m - 7 условие существования корней D ≥ 0 4m - 7 ≥ 0 -4m - 7 ≥ 0 для m < 7/4 корней нет для m > -7/4 корней нет для m ≥ 7/4 x₁;₂ = (-3 +-√(4m-7)) / 2 для m < 7/4 корней НЕТ
C2+1=c2-1 следовательно что,
C3=-3
По той же аналогии, подставляем 4 в n и получаем,
C4+1=c4-1
C5=c3 получается что,
C5=-3