Ученик соберет прибор за х ч., тогда:
мастер за (х-8) - по условию, мастеру потребуеттся на 8 часов меньше.
Вся работа (сборка прибора) является целым, законченным, действием, поэтому может быть принята за 1 (за единицу).
Производительность труда показывает сколько продукции произведет работник( ученик, мастер) за 1 час:
производительность труда ученика = 1/х,мастера - 1/(х-8).общая производительность = 1/3 - треть прибора за 1 час соберут ученик и мастер, работая сообща значит:1/х+1/(х-8)=1/3 => x*(x-8)*3=3x²-24x - общий знаменатель
(3*(x-8)+3x)/(3x²-8x)=(x²-8x)/(3x²-8x)
3x-24+3x=x²-8x
-x²+14x-24=0
x²-14x+24=0
x₁+x₂=14
x₁*x₂=24
x₁=2 ч.
x₂=12 ч.
Если х=2, то (х-8)=-6 ч., время не может быть отрицательным - х≠2 ч.
Если х=12 ч., то (х-8)=4 ч.
Проверка: 1/12+1/4=
1/12+3/12=
4/12=1/3
ответ: Мастер может собрать прибор за 4 часа
x(x-3) = 0
Произведение равно нулю, если один из множителей (или оба) равен нулю, поэтому наше уравнение распадается на два уравнения (это значит, что его корнями будут корни двух "уменьшонных" уравнений, в которых мы множители приравниваем к нулю):
=0
- 3 = 0
= 3
ответ: 0; 3
б)6у(у+1)+у+1=0;
(6у+1)(у+1)=0
Аналогично решению записываем два уравнения, приравниваю к нулю множители 6y+1 и y+1:
6y+1=0 y+1=0
6y = -1 y = -1
y = -1/6
ответ: -1; -1/6
в)t³+4+t²+4t=0;
(t²+4)+(t³+4t)=0
(t²+4)+t(t²+4)=0
(t²+4)(1+t)=0
Снова разбиваем на два уравнения:
t²+4=0 1+t=0
t² = -4 t = -1
Первое уравнение корней не имеет, т.к. квадрат любого числа неотрицателен. Следовательно,
ответ: -1