(x-y)^2 = 9 то есть наша система разбивается на 2 примитивных
x+y = 7 x+y = 7
x-y = 3 x-y = -3
2x = 10 2x=4
x=5 x=2
y=7-x=7-5=2 y=7-x=7-2=5
ответ x1=5 x2=2
y1=2 y2=5
Обрати внимание, что решения симметричные, это было понятно с самого начала, так как сама система(уравнения системы) симметричные, поэтому можно было сначала доказать лемму
Если (x0,y0) решение, то и (y0,x0) тоже решение
После чего найти только ОДНО решение, второе получается автоматически.
Этот метод часто применяется в сложных системах, где сложно получается решение, чтобы не проводить лишних расчётов.
В нашем случае всё просто, но этот метод(подход) нужно всегда иметь в виду.
x^2-2x-12+3x^2-6x-13=0 Произведем замену переменных. Пусть t=x^2-2x В результате замены переменных получаем вс уравнение. 3t-13+t^2-2t+1=0 Раскрываем скобки. 3t-13+t^2-2t+1=0 3t-13+1+t^2-2t=0 3t-12+t^2-2t=0 Приводим подобные члены. 1t-12+t^2=0 t-12+t^2=0 Изменяем порядок действий. t^2+t-12=0 Находим дискриминант. D=b^2-4ac=12-4•1-12=49 Дискриминант положителен, значит уравнение имеет два корня. Воспользуемся формулой корней квадратного уравнения. t1,2=-b±D/2a t1=-1-72•1=-4 ;t2=-1+72•1=3 ответ вс уравнения: t=-4;t=3 . В этом случае исходное уравнение сводится к уравнению x^2-2x=-4 ;x^2-2x=3 Теперь решение исходного уравнения разбивается на отдельные случаи. Случай 1 . x^2-2x=-4 Перенесем все в левую часть. x^2-2x+4=0 Находим дискриминант. D=b^2-4ac=-22-4•1•4=-12 Дискриминант отрицателен, значит уравнение не имеет корней. Итак,ответ этого случая: нет решений. Случай 2 . x^2-2x=3 Перенесем все в левую часть. x^2-2x-3=0 Находим дискриминант. D=b^2-4ac=-22-4•1-3=16 Дискриминант положителен, значит уравнение имеет два корня. Воспользуемся формулой корней квадратного уравнения. x1,2=-b±D/2a x1=2-42•1=-1 ;x2=2+42•1=3 Итак,ответ этого случая: x=-1;x=3 . Окончательный ответ: x=-1;x=3 .
Проще всего систему решить так
x+y=7
x^2-2xy+y^2=9
x+y =7
(x-y)^2 = 9 то есть наша система разбивается на 2 примитивных
x+y = 7 x+y = 7
x-y = 3 x-y = -3
2x = 10 2x=4
x=5 x=2
y=7-x=7-5=2 y=7-x=7-2=5
ответ x1=5 x2=2
y1=2 y2=5
Обрати внимание, что решения симметричные, это было понятно с самого начала, так как сама система(уравнения системы) симметричные, поэтому можно было сначала доказать лемму
Если (x0,y0) решение, то и (y0,x0) тоже решение
После чего найти только ОДНО решение, второе получается автоматически.
Этот метод часто применяется в сложных системах, где сложно получается решение, чтобы не проводить лишних расчётов.
В нашем случае всё просто, но этот метод(подход) нужно всегда иметь в виду.