Нельзя допустить деление на нуль, следовательно x≠0. Отсюда область определения:
График получается с растягивания графика (обратная пропорциональность) вдоль оси у в 6 раз. Это означает, что у данной функции, многие свойства такие же как и у обратной пропорциональности. Мы знаем что график обратной пропорциональности называется гиперболой. Следовательно, график тоже является гиперболой.
Область значений:
Так как функция принимает отрицательные значения на луче то и принимает отрицательные значения на луче
Нельзя допустить деление на нуль, следовательно x≠0. Отсюда область определения:
График получается с растягивания графика (обратная пропорциональность) вдоль оси у в 6 раз. Это означает, что у данной функции, многие свойства такие же как и у обратной пропорциональности. Мы знаем что график обратной пропорциональности называется гиперболой. Следовательно, график тоже является гиперболой.
Область значений:
Так как функция принимает отрицательные значения на луче то и принимает отрицательные значения на луче
Найти область определения
Найдем область определения, отыскав промежутки, на которых уравнение определено.
Запись в виде интервала:
[2,10]
Нотация построения множества:
{x|2≤x≤10}