Объяснение:
Разложим на множители выражение в числителе и знаменателе.
\begin{gathered}y=\frac{24-12x}{2x-x^2}\\y=\frac{-12(x-2)}{-x(x-2)}\\\left \{ {{y=\frac{12}{x} } \atop {x\neq 2}} \right.\end{gathered}
y=
2x−x
2
24−12x
y=
−x(x−2)
−12(x−2)
{
x
=2
y=
x
12
Это гипербола, которая лежит в 1 и 3 четверти и имеет асимптоты, которыми являются оси координат.
Отметим 2 точки, которые принадлежат этой функции на координатной плоскости для более точно построения.
x=12 --> y=1; (12;1)
x=1 --> y=12; (1;12)
И проведём через них нашу гиперболу.
В решении.
Объяснение:
у=7х2+21х
побудувати графік, знайти вершину, вітки,область значення та визначення, функція зростає та спадає,проміжки знак осталості,найменше та найбільше значення
у = 7х² + 21х;
Построить график, найти вершину, направление ветвей, область определения и область значений, промежутки возрастания и убывания функции, промежутки знакопостоянства, наибольшее и наименьшее значение функции.
а) График - парабола, ветви направлены вверх.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -4 -3 -2 -1 0 1
у 28 0 -14 -14 0 28
По вычисленным точкам построить параболу.
Парабола пересекает ось Ох в точках х = -3; х = 0 (нули функции).
б) Найти координаты вершины параболы;
Формула: х₀ = -b/2a
x₀ = -21/14
x₀ = -1,5;
у₀ = 7 * (-1,5)² + 21 * (-1,5) = 15,75 - 31,5 = -15,75;
Координаты вершины параболы: (-1,5; -15,75).
в) Найти область определения;
Область определения - это проекция графика функции на ось Ох.
Обозначается как D(f) или D(у).
Область определения параболы - множество всех действительных чисел, потому что она проецируется на любую точку оси Ох.
Обычно запись: D(f) = R.
г) Найти область значений функции;
Область значений - это проекция графика на ось Оу.
Обозначается как Е(f) или Е(y).
Область значений параболы определяется координатами вершины, конкретно у₀, значение у вершины параболы.
у₀ = -15,75;
Е(f) = у∈ R : у >= -15,75
у может быть любым, только >= -15,75.
д) Найти промежутки возрастания и убывания функции;
Функция возрастает при х∈(-1,5; +∞);
Функция убывает при х∈(-∞; -1,5).
е) Найти промежутки знакопостоянства;
у > 0 (график выше оси Ох) при х∈(-∞; -3)∪(0; +∞);
у < 0 (график ниже оси Ох) при х∈(-3; 0).
ж) у наиб. не существует;
у наим. = -15,75.