М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ВККeerboom
ВККeerboom
28.05.2021 10:26 •  Алгебра

Задайте с помщью перечесления элементов множество натуральных делителей числа 30.выдилите из него подмножество простых чисел являющихся делителями 30

👇
Ответ:
vanyushagay96
vanyushagay96
28.05.2021
A={2,3,5,6,,,10,15,30} множество нат делителей числа 30
4,8(70 оценок)
Открыть все ответы
Ответ:
Английский термин "real number" можно перевести как "действительное число" или как "вещественное число". Поэтому "действительные числа" называются в России также "вещественными числами".

В Москве предпочитают говорить "действительные числа", в Петербурге - "вещественные числа".

Физики и техники говорят "вещественные числа" и НИКОГДА не скажут "действительные числа", потому что тогда "невещественные числа" (комплексные числа) придётся называть "недействительными", а это, как вы видите, звучит вовсе нелепо!
4,4(17 оценок)
Ответ:
polinabaryshni
polinabaryshni
28.05.2021

Рассмотрим последние цифры степеней чисел 3 и 7 (очевидно, степени чисел 33 и 77 оканчиваются на те же цифры; в таблице последняя цифра числа x обозначена как x mod 10):

\begin{array}{c|c|c}n&3^n\mod 10&7^n\mod 10\\0 & 1 & 1\\1 & 3 & 7\\2 & 9 & 9\\3 & 7 & 3\\4 & 1 & 1\end{array}

Дальше таблицу можно не продолжать: поскольку последняя цифра степени определяется только последней цифрой предыдущей степени, то дальше всё будет повторяться: например, для степеней тройки дальше идут 3, 9, 7, 1, 3, 9, ... Таким образом, последовательность последних цифр степеней тройки и семёрки является периодической с периодом 4, то есть прибавление любого количества четвёрок к показателю степени последнюю цифру не меняет.

33 = 1+8\cdot4, поэтому 33^{33} оканчивается на ту же цифру, что и 3^1, то есть на 3. 77 =1+19\cdot4, поэтому 77^{77} оканчивается на ту же цифру, что и 7^1, то есть на 7. Значит, сумма 33^{33}+77^{77} оканчивается на ту же цифру, что и 3+7=10, то есть на 0. Искомый остаток равен нулю.

ответ. 0

4,4(90 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ