Метод подстановки. если есть система, например, х + y = 10 xy = 1. то можно выразить х или у. из первого уравнения x = 10 - y, выразили х, при этом у перенесли с обратным знаком направо. теперь вместо х во втором уравнении подставляем его выражение: xy = 1 => (10 - y)y = 1, -1 + 10y + y^2 = 0. не удачное, но квадратное уравнение. принцип: выразить одно через другое, и это одно везде заменить его выражением. сложение. например, дана система, ax + by = a cx - dy = b. здесь буквы, кроме х и у, это просто некоторые числа, абстрактно. и если вот таким образом: ax+cx + by - dy = a + b (к первому уравнению прибавили второе) cx - dy = b, (второе остаётся без изменения) из первого уравнения сразу выражается какая-нибудь переменная как число, то потом во второе подставляется вместо этой переменной число. возможно, таких сложений надо будет сделать несколько. возможно, будет лучше ко второму прибавлять первое, тогда без изменений останется первое.
A_n=6+8(n-1)=b_k=2+3(k-1); 8n-3k=1. Подбираем частное решение n=2; k=5 (лень делать "по науке", если решение элементарно угадывается); a_2=b_5=14. Перепишем уравнение в виде 8(n-2)-3(k-5)=0⇒n - 2 делится на 3, то есть n - 2=3m⇒8·3m=3(k-5)⇒k - 5=8m. Поэтому общее решение нашего уравнение имеет вид n=2+3m; k=5+8m - члены наших прогрессий с такими номерами совпадают. Находим все такие k: 1≤k ≤40 k=5; 13;21;29;37 (при этом m=0; 1; 2; 3; 4); n=2; 5; 8; 11; 14 b_5=a_2=14; b_13=a_5=38 (на 24 больше); b_21=a_8=62 (еще на 24 больше); b_29=a_11=86; b_37=a_14=110