Объяснение:
Первая труба наполняет бассейн за х часов,тогда за час - 1/х.
Вторая труба наполняет бассейн за (х+10) часов,тогда за час - 1/(х+10).
Вместе за час работы они наполнят бассейн (1/х)+ (1/(х+10)).
(1/х)+ (1/(х+10))= (х+10+х)/(х*(х+10))=(2х+10) / (х²+10х)
При совместной работе они наполняют бассейн за 12 часов:
1 ÷ (2х+10) / (х²+10х) = 12
1 * (х²+10х) / (2х+10) = 12
(х²+10х) / (2х+10) = 12
12*(2х+10) = х²+10х
24х+120-х²-10х=0
-х²+14х+120=0
х²-14х-120=0
х₁+х₂=14
х₁х₂= -120
х₁= -6 не подходит по условию
х₂=20 часов - первая труба наполняет бассейн.
20+10=30 часов - вторая труба наполняет бассейн.
у=х-4
Подставляем за место у во второе уравнение
х(х-4)=12
x^2-4x=12
x^2-4x-12=0
Через дискриминант получается
D=(-4)^2-4*1*(-12)=64=8
x1=(4+8)/2=6
x2=(4-8)/2=-2
y1=6-4=2
y2=-2-4=-6
ответ: (6;2), (-2;-6)