Сначала напишем уравнение прямой в общем виде: у = ах + с Здесь а (коэффициент х) - наклон прямой, который зависит от угла между прямой и положительным направлением оси Х. Если точнее, то это тангенс угла наклона (это для тех, кто хоть немного знает тригонометрию).
У параллельных прямых одинаковые а, т.к. углы наклона равны. Следовательно: у = 5 + 6х у = 6х + 5 (а = 6), следовательно у параллельной прямой тоже а = 6: у = 6х - 4
Следующая пара: у = 12 - 7х у = -7х + 12, т.е. а = -7, следовательно у параллельной прямой тоже а = -7: у = -7х + 6
Числовая окружность похожа на числовую прямую: есть начало отсчета, положительное и отрицательное направление и единичный отрезок. Только на числовой окружности удобнее показывать углы поворота, а не просто числа. Начало отсчета на окружности - правый конец горизонтального радиуса. Положительное направление - против часовой стрелки. Единичный отрезок - один радиан или один градус (в зависимости от задачи).
Вся окружность - 2π радиан. Соответственно, пол окружности - π радиан, четверть - π/2 радиан. Как найти точку, соответствующую числу 2π/3? Надо пол окружности разделить на три равные части и взять 2 из них.
7π/4 - семь четвертых - это больше единицы, то есть 7π/4 больше, чем целое π (4π/4). Значит, точка будет лежать в нижней полуокружности. Делим ее на 4 части и отсчитываем недостающие 3 части. Или можно рассуждать иначе: 2π = 8π/4, а нам надо 7π/4, значит точка "недовернется" на π/4. Делим пополам дугу IV четверти, это искомая точка.
5π/6 - меньше целого π. Делим верхнюю полуокружность на 6 равных частей и отсчитываем 5.
175
Объяснение:
f(5)=7×5^2=7×25=175
ответ f(5)=175