М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
deminav733
deminav733
28.09.2020 16:04 •  Алгебра

Решите уравнение (х-7)(степень 2)+3=(х-2)(х+2)

👇
Ответ:

x²-14x+49+3=x²-2²

x²-14x+49+3-x²+4=0

56-14x=0

x=56/14

x=4

 

4,4(2 оценок)
Открыть все ответы
Ответ:
даун47
даун47
28.09.2020
Преобразуем левую часть:
sin^{4} x + cos^{4} x = ( sin^{2}x) ^{2} + (cos^{2}x) ^{2} = ( sin^{2}x + cos^{2}x) ^{2} - \\ 2 sin^{2} x cos^{2} x = 1 - 2 sin^{2} x cos^{2} x

Далее:
1 - \frac{1}{2} * 4 sin^{2} x cos^{2}x = 1 - \frac{1}{2} sin^{2} 2x
Таким образом, получаем уравнение:
1 - \frac{1}{2} sin^{2}2x = -\frac{25}{8} + \frac{1}{ sin^{2}2x }
Теперь понятно, что можно ввести замену t = sin^{2}2x и продолжать решение уже дробно-рационального уравнения.

Советую запомнить приём, который я здесь употребил. Он состоит вот в чём.
Мы помним формулу сокращённого умножения:
(x+y)^{2} = x^{2} + 2xy + y^{2}
Отсюда я могу легко выразить сумму квадратов:
x^{2} + y^{2} = (x+y)^{2} - 2xy
Думаю, Вы уже догадались, что в нашем уравнении сыграло роль x, а что y.
Этот приём встречается очень часто в самых неожиданных ситуациях, так что рекомендую запомнить его.
Уравнение можно было решить и по формулам понижения степени(правда, это значительно было бы сложнее). Но в целом, можно рассмотреть и такой вариант, но я показал проще.

Делаем замену:
t = sin^{2} 2x, 0 \leq t \leq 1
После замены получаем:
1 - \frac{t}{2} = - \frac{25}{8} + \frac{1}{t}
Умножаем обе части уравнения на 8t(с дробями работать крайне неудобно, да и t в знаменателе нам ни к чему - просто запомним, что он должен быть отличным от 0, а потом проверим это):
8t - 4 t^{2} + 25t - 8 = 0
4 t^{2} - 33t + 8 = 0
Решаем квадратное уравнение(кстати, t уже отличен от 0. В этом можно убедиться прямой подстановкой)
D = 33^{2} - 4 * 4 * 8 = 961 \\ 
 t_{1} = \frac{33 - 31}{8} = \frac{1}{4}; t_{2} = \frac{33 + 31}{8} = 8 \ \textgreater \ 1 - этот корень не удовлетворяет нашему уравнению.
Следовательно, возвращаясь к переменной x, получаем простейшее уравнение:
sin^{2} 2x = \frac{1}{4} \\ \frac{1 - cos 4x}{2} = \frac{1}{4}
Отсюда
cos 4x = \frac{1}{2} \\ 4x = +- \frac{ \pi }{3} + 2 \pi n \\ x = +- \frac{ \pi }{12} + \frac{ \pi n}{2}
Это и есть ответ. Напомню, что при решении простейшего уравнения я использовал формулу понижения степени, а в конечном результате n - целое число.
4,7(25 оценок)
Ответ:
nasamar
nasamar
28.09.2020

1) (18a-3a²)/(8a²-48a)=3a(6-a)/8a(a-6)=3a(-1)(a-6)/8a(a-6)=-3/8

2) (8p-40)/(15-3p)=8(p-5)/3(5-p)=8(-1)(5-p)/3(5-p)=-8/3

3) (4-x²)/(10-5x)=(2-x)(2+x)/5(2-x)=(2+x)/5=2/5+x/5=0.4+0.2x

4) (3x+6y)²/(5x+10y)=9(x+2y)²/5(x+2y)=9(x+2y)/5=1.8(x+2y)=1.8x+3.6y

5) (ax+bx-ay-by)/(bx-by)=(x(a+b)-y(a+b))/b(x-y)=(a+b)(x-y)/b(x-y)=(a+b)/b=a/b+1

6) (a²-6a+9)/(27-a³)=(a-3)²/(3-a)(9+3a+a²)=(a-3)²/(-1)(a-3)(9+3a+a²)=                     =(3-a)/(9+3a+a²)

7) (2a-2b)²/(a-b)=4(a-b)²/(a-b)=4(a-b)=4a-4b

8) (4c+12d)²/(c+3d)=16(c+3d)²/(c+3d)=16(c+3d)=16c+48d

9) (4x²-y²)/(6x-3y)²=(2x-3y)(2x+3y)/9(2x-y)²=(2x+y)/9(2x-y)

10) (ab-3b-2a+6)/(15-5a)=(b(a-3)-2(a-3))/5(3-a)=(a-3)(b-2)/5(3-a)=                 =(a-3)(b-2)/5(-1)(a-3)=(2-b)/5

Объяснение:

4,4(47 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ