интервалы (0,5;├ 1] (1;├ 1,5] (1,5;├ 2] (2;├ 2,5]
частота 4 4 3 1
запишем все числа в порядке возрастания
0,6 0,8 0,9 1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 2,1
Теперь разобьем их на интервалы 0,5+0,5=1 1+0,5=1,5 1,5+0,5=2 2+0,5=2,5
Получилось 4 интервала составим интервальную таблицу
Объяснение:
запишем все числа в порядке возрастания
0,6 0,8 0,9 1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 2,1
Теперь разобьем их на интервалы 0,5+0,5=1 1+0,5=1,5 1,5+0,5=2 2+0,5=2,5
Получилось 4 интервала составим интервальную таблицу
докажем утверждение от противного.
можно предположить, что для любых двух разных точек a и b из s найдется отличная от них точка x из s такая, что либо xa < 0,999ab, либо xb < 0,999ab.
переформулируем утверждение: для любого отрезка i с концами в s и длиной l найдется отрезок i′ с концами в s длины не более 0,999l, один из концов которого совпадает с некоторым концом i.
или, иначе говоря, i′ пересекает i.
возьмем теперь первый отрезок i1 длины l и будем брать отрезки i2, i3, …так, что ik + 1 пересекается с ik и |ik + 1| < 0,999|ik|.
все эти отрезки имеют концы в s. ломаная не короче отрезка, соединяющего ее концы, поэтому расстояние от любого конца ik до любого конца i1 не превосходит
следовательно, в квадрате 2000l × 2000l с центром в любом из концов i1 лежит бесконечное число точек s.
но из условия следует конечность их числа в любом квадрате.