Квадратичная функция имеет вид y=ax²+bx+c ,a,b,c-числа a≠0 если b и c равны 0,то функция имеет вид y=ax² график парабола,вершина в начале координат ,если a больше 0-ветви направлены вверх,если a меньше 0-ветви направлены вниз. график функции y=ax² можно получить из графика функции y=x² растяжением от оси x в а раз,если а больше 0 и сжатием к оси x в 1/а раз,если 0∠а∠1 график функции y=ax²+n получается из графика функции y=ax² путем параллельного переноса вдоль оси y на n единиц вверх,если n ,больше 0 и на -n единиц вниз,если n∠0. график функции y=a(x-m)² получается из графика y=ax² путем параллельного переноса вдоль оси x на m единиц вправо,если m больше 0 и -m влево,если m∠0
F(x)=y а) y= 1.5 - 3x - линейное уравнение, график - прямая. Составим таблицу значений (достаточно двух точек). х 0 1 у 1,5 -1,5 Теперь просто проводим прямую через эти точки б) у= 4,5х - линейное уравнение, график - прямая. Составим таблицу значений (достаточно двух точек). х 0 1 у 0 4,5 Теперь просто проводим прямую через эти точки в) у= 10/х - обратная пропорциональность, график - гипербола. Составим таблицу значений. х 1 2 5 10 И теперь возьмем те же отрицательные числа у 10 5 2 1 Теперь плавной линией соединяем положительные точки с положительными, а отрицательные - с отрицательными так, чтобы эти линии не пересекали и не касались осей. г) у= -1/х обратная пропорциональность, график - гипербола. Составим таблицу значений. х 4 2 1/2 1/4 И теперь возьмем те же отрицательные числа у 1/4 1/2 2 4 Теперь плавной линией соединяем положительные точки с положительными, а отрицательные - с отрицательными так, чтобы эти линии не пересекали и не касались осей.
Строим угол C, равный данному углу Е. Для этого
строим луч СН;
проводим дуги с произвольным, но одинаковым радиусом с центрами в точках Е и С.;
D и F - точки пересечения дуги со сторонами угла Е, К - точка пересечения дуги с лучом СН;
проводим дугу с центром в точке F, радиусом FD, затем с тем же радиусом с центром в точке К. Точка пересечения дуг - L.
Проводим луч CL. Угол LCK равен данному углу Е.
На луче СН откладываем отрезок СА = b.
На луче CL откладываем отрезок СВ = а. Соединяем точки А и В.
Треугольник АВС - искомый.