Первому герою можно дать 6 вариантов оружия. Далее второму при каждом из этих 6-ти вариантов первого можно дать 5 вариантов (т.к. один из видов оружия занят первым), значит, на первых двух у нас есть 6*5 вариантов. Далее абсолютно аналогично: при каждом из этих 6*5 мы можем дать третьему 4 варианта (два заняты), получаем 6*5*4 вариантов; при каждом из этих 6*5*4 мы можем дать четвёртому 3 варианта (три заняты), получаем 6*5*4*3 вариантов; при каждом из этих 6*5*4*3 мы можем дать пятому 2 варианта (четыре заняты), получаем 6*5*4*3*2 вариантов; и наконец последнему при каждом из 6*5*4*3*2 вариантов не оставят выбора - у него 1 вариант (оставшееся оружие) Значит, всего 6*5*4*3*2*1 = 720 вариантов (Это задача комбинаторная; здесь вычислялось количество перестановок по формуле n! ; n! = n*(n-1)*(n-2)*...*1, т.е. здесь было 6! = 720)
Объяснение:
3c-4d 3c+4d
( - )
4c-3d 4c+3d
12c^2 +9cd -16 cd -12d^2
(4c-3d ) ( 4c+3d) (по формуле (a+b) (a-b) =a^2 - b^2) 12c^2 -7 cd -12d^2 14 (4c-3d ) ( 4c+3d) : 4c+ 3d 12c^2 -7 cd -12d^2 (умножить на) 4c+3d (4c-3d ) ( 4c+3d) 14 (сокращаем) 12c^2 -7 cd -12d^2 4c^2-2cd 14 (4c-3d ) + 4c-3d (общий знаменатель 14 (4c-3d ). 4c-3d - домножим на 14) 12c^2 -7 cd -12d^2 +56с^2 -28cd =0 68c^2 -35cd -12d^2 =0 (под вечер мозг взорвался и был таков)
Подробнее - на -