1. Диета: не больше 5-и тортиков в день:
2. Максимум может съесть 8 тортиков в день;
3. Условие, если 1 день - 8 тортиков,
то 2 следующих дня - по 3 тортика в день;
Если предположить, что с 01.12 до 31.12 сила воли слону не оказала ни разу, то слон съел бы за месяц (в декабре 31 день)
31*5=155 тортиков
Поскольку, по условию, сила воли иногда отказывает, то минимальное количество дней, когда слону отказала сила воли, = 1.
Если предположить, что слон съел максимальное количество тортиков, 8 шт, 31 декабря, то количество съеденного будет
30*5+8=158 тортиков, и диета - закончилась))
Если предположить, что день отказа силы воли пришелся не позже, чем 3 дня до конца декабря, то количество съеденных тортиков будет:
28*5+8+3+3=154 тортика
ответ: 158 тортиков
Для того, чтобы представить выражение (y + 4)(y^2 - 3y + 5) в виде многочлена стандартного вида (в данном многочлене не должно быть подобных одночленов, а каждый одночлен должен быть приведен к стандартному виду.
Откроем скобки, применим правило умножения скобки на скобку.
(y + 4)(y^2 - 3y + 5) = y * y^2 - y * 3y + y * 5 + 4 * y^2 - 4 * 3y + 4 * 5 = y^3 - 3y^2 + 5y + 4y^2 - 12y + 20;
Приведем подобные одночлены:
y^3 - 3y^2 + 5y + 4y^2 - 12y + 20 = y^3 - 3y^2 + 4y^2 + 5y - 12y + 20 = y^3 + y^2 - 7y + 20.
ответ : х=3 ,у=2
Объяснение:
2(2х-у)+3(2х+у)=32
5(2х-у)-2(2х+у)=4
4х-2у+6х+3у=32
10х-5у-4х-2у=4
10х+у=32
6х-7у=4
у=32-10х
6х-7(32-10х)=4
теперь решаем уравнение :
6х-7(32-10х)=4
6х-224+70х=4
76х=4+224
76х=228 [:76]
х=3
подставляем в первое уравнение, что бы найти У :
у=32-10х
у=32-10*3
у=32-30
у=2