Докажем сначала, что корень единственный. Для этого исследуем функцию
корни производной
В точке функция имеет локальный максимум, в точке - локальный минимум, после него функция монотонно растет.
так как корень из двух меньше, чем 1,5. Итак, слева от функция возрастает, справа убывает, начиная с снова возрастает. Поскольку функция в точке отрицательна, существует только один корень функции (и расположен он правее ; для нас, правда, важна только его единственность).
Возвращаемся к уравнению Для его решения применим метод Кардано. Замена после элементарных упрощений получаем уравнение
Вроде бы надо исследовать оба значения p, однако оба они дадут одно и то же значение t (кстати, ранее мы даже доказали, что двух решений быть не может). Итак, пусть p=2;
ответ:
Замечаем, что перестановки происходят отдельно среди четных чисел и среди нечетных чисел. Поэтому надо ответить на следующий вопрос: есть k предметов, расставленных в каком-то порядке слева-направо и соответствующим образом занумерованных; меняя местами за одну операцию два соседних предмета, нужно расставить их в том же порядке, но справа-налево. Говоря ученым языком, можно сказать, что сначала у нас не было ни одной инверсии (инверсия - это когда предмет с меньшим номером стоит правее предмета с большим номером), а надо сделать максимальное количество инверсий. Меняя местами соседей, мы каждый раз изменяем количество инверсий на 1. Конечно, нам невыгодно уменьшать количество инверсий, а выгодно - увеличивать. Но в каком порядке производить эту операцию - менять местами соседей - абсолютно непринципиально. Поступим, скажем, так. Поменяем сначала местами первый предмет и второй, затем первый и третий, первый и четвертый, и так далее, наконец, первый и последний. Всё. Первый предмет оказался на нужном месте и больше оттуда никуда сдвигаться не будет. Потребовалось нам для этого, естественно, (k-1) операция. Далее будем передвигать второй предмет до тех пор, пока он не поменяется местами с k-м предметом и не окажется рядом с первым, но левее первого. На это потребуется (k-2) операции. И так далее. Всего мы насчитаем операций.
Остается подвести итоги. Окончательный ответ зависит от того, каково n - четное оно или нечетное.
1-й случай: n - четное, n=2m. Это означает, что у нас m четных чисел и m нечетных чисел. Всего операций получится
2-й случай. n - нечетное, n=2m+1. Это означает, что у нас m четных чисел и (m+1) нечетных чисел.Всего операций получится
Решим задачу для n=5, 6, 7, 23.
n=5 - нечетное;
n=6 - четное;
n=7 - нечетное;
n=23 - нечетное;
ЭТО В КАКОМ КЛАССЕ ТО А? Я ЕСЛИ ЧТО В 5А ЭТО В КАКОМ БЛИН