Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:
Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p1*(1-p2)=0.8*(1-0.85)=0.12
Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p1)*p2=(1-0.8)*0.85=0.17
Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p1*p2=0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97
Объяснение:
-x^2+2x-1 = -(x^2-2x+1) = -(x-1)^2
Точка пересечения о осью ординат y=-1; x=0
значит, ищем касательную в точке х0=0
f(x)=-x^2+2x-1
f'(x)=-2x+2
f(a)=-1
f'(a)=2
y=f(a)+f'(a)(x-a)=-1+2(x-0)=-1+2x=2x-1
Значит, треугольник образован линиями y=2-x; y=2x-1 и осью абсцисс.
2x-1=0 => x=1/2
2-x=0 => x=2
берем интеграл
эм, что-то не получается нормальный интеграл взять, слишком большая плозадь получается
придется брать по отдельности
int (2x-1))dx; x=1/2..1 = 1/4
int (2-х))dx; x=1..2 = 1/2
1/4+1/2=3/4 =0.75 - искомая площадь