Многочлен в левой части можно разложить на множители:
, где A, ..., F - некоторые целые коэффициенты. Раскроем скобки в правой части:
Многочлены равны, когда равны коэффициенты при соотвествующих степенях x. Составим систему уравнений (знак системы не пишу):
AD=2
AE+BD=5
AF+EB+CD=-5
BF+EC=-13
CF=-4
6 неизвестных и всего 5 уравнений - не айс. Но нас то, что A, ..., F - целые числа.
Взглянем на первое и последнее уравнение. Имеем 4 различных варианта значений A, D, C, F. Начинаем рассматривать, по порядку, когда найдем хотя бы одно решение системы, то все будет круто и дальше можно будет не продолжать:
A=1, D=2, C=1, F=-4:
E+2B=5
EB=-3
-4B+E=-13
Не забываем о том, что коэффициенты целые и быстро заключаем, что решением являются числа B=3, E=-1. Вот так повезло, с первого раза нашли подходящую систему. Итак
A=1, B=3, C=1, D=2, E=-1, F=-4
Тогда
Уравнение принимает вид:
Дальше решит даже первоклассник
1. q = -2.
2. 1;1/2;1/4 q = 1/2
1;3;9q = 3
2/3;1/2;3/8q = 3/4
√2; 1;√2/2q = 1/√2
3. заданная формула возможно неточно переписана или последовательность не геометрическая.
3*2n - 3 умножить на 2n или 3 возвести в степень 2n
4. q = 0,5
5. S = -0.25
6. b6 = 243.
7. 3-n,3-2n,3-3n,3-4n, 3n,3n+1,3n+2,3n+3 - єти последовательности не являются геометрическими прогрессиями
Объяснение:
1. Последовательность геометрическая т.к. а2 = а1 * q, а3 = а2 * q, где
q - одно и тоже число (знаменатель данной геометрической прогрессии)
q = а2 / а1 = -6 / 3 = -2.
4. Из формулы нахождения n-го члена геометрической прогрессии
q = а2 / а1 = 10/20 = 0,5.
5. q = а2 / а1 = -2/4 = -0,5
а5 = 4 * (-0,5)^4 = 0.25
a4 = 4 * (-0.5) ^3 = -0.5
6. b6 = b1 * q^5 = 243.