430° = 430*\frac{\pi}{180}=\frac{43\pi}{18};
450° = 450*\frac{\pi}{180}=\frac{5\pi}{2};
900° = 900*\frac{\pi}{180}=5\pi;
390° = 390*\frac{\pi}{180}=\frac{13\pi}{6};
33° = 33*\frac{\pi}{180}=\frac{11\pi}{60};
15° = 15*\frac{\pi}{180}=\frac{\pi}{12};
10° = 10*\frac{\pi}{180}=\frac{\pi}{18};
20° = 20*\frac{\pi}{180}=\frac{\pi}{9};
85° = 85*\frac{\pi}{180}=\frac{17\pi}{36};
160° = 160*\frac{\pi}{180}=\frac{8\pi}{9};
200° = 200*\frac{\pi}{180}=\frac{10\pi}{9};
35° = 35*\frac{\pi}{180}=\frac{7\pi}{36};
60° = 60*\frac{\pi}{180}=\frac{\pi}{3};
760° = 760*\frac{\pi}{180}=\frac{38\pi}{9};
45° = 45*\frac{\pi}{180}=\frac{\pi}{4};
350° = 350*\frac{\pi}{180}=\frac{35\pi}{18};
Объяснение:
Одно число n, следующее за ним (n+1)
Разность квадратов двух последовательных натуральных чисел
(n+1)²-n²
(Из бо`льшего вычитаем меньшее, потому что по условию разности квадратов неотрицательны
Следующие два последовательных натуральных чисел это (n+2) и (n+3)
Разность квадратов следующих двух последовательных натуральных чисел
(n+3)²-(n+2)²
(Здесь тоже из бо`льшего вычитаем меньшее)
Сумма разностей квадратов по условию равна 50.
Уравнение
((n+1)²-n²) + ((n+3)²-(n+2)²)=50
(n²+2n+1-n²)+(n²+6n+9-n²-4n-4)=50
2n+1+2n+5=50
4n=44
n=11
11; 12; 13; 14
(14²-13²)+(12²-11²)=27+23
27+23=50 - верно
Подробнее - на -