Введем подстановку t = cos (3x), где |t| меньше или равен 1, т.к. функция cosx является ограниченной снизу -1, сверху +1.
Тогда исходное уравнение перепишется следующим образом:
2t^2 - 5t - 3 = 0.
Сейчас перед нами обыкновенное квадратное уравнение. Находим дискриминант и корни, если они будут.
D = b^2 - 4ac,
D = 25 + 24 = 49,
D>0 и значит уравнение имеет два корня.
t1 = (-b - корень из D) / (2a),
t1 = (5 - 7) / 4 = -1/2;
t2 = (-b + корень из D) / (2a),
t1 = (5 + 7) / 4 = 3;
Вернемся к подстановке t = cos (3x):
1) cos (3x) = -1/2,
3x = ± (2pi) / 3 + 2pi*k, где k - целое число;
x = ± (2pi)/9 + (2pi*k) / 3, где k - целое число.
2) cos (3x) ≠ 3, т.к. |t| ≤ 1.
ответ: x = ± (2pi)/9 + (2pi*k) / 3, где k - целое число.
1) Первые 10 простых чисел, от 2 до 29:
2357111317192329
Чтобы получить наибольшее число, нужно вычеркнуть 235 и 111. Получится
7317192329
2) Пусть сумма всех чисел в каждой строке равна а.
Тогда сумма всех чисел в таблице равна М*а.
Сумма чисел в каждом столбце тоже равна а.
Тогда сумма чисел во всей таблице равна К*а.
Но это одно и тоже число.
М*а = К*а
М = К
ЧТД.
3) 1*2+2*3+3*4+4*5+5*6+6*7+7*8+8*9+9*10+...+997*998+998*999+999*1000
Выпишем последние цифры в каждом произведении.
2 + 6 + 2 + 0 + 0 + 2 + 6 + 2 + 0 + 0 +...+ 0 + 0 + 2 + 6 + 2 + 0 =
= (2+6+2) + 0 + (2+6+2) + 0 + ... + 0 + (2+6+2) + 0 = 10 + 0 + 10 + 0 +...+ 10 + 0
Эта сумма оканчивается на 0
4) Нельзя. Количество монет, лежащих орлом вверх, всегда четное.
Сначала 0, потом 20, потом 2 (если я переверну монету, которая осталась решкой вверх, и еще 19, которые стали орлом вверх), и так далее.
Оно не может стать нечетным числом 21.
5) Число 2017 нужно написать 9 раз подряд. Тогда каждая цифра будет повторена 9 раз, и сумма цифр будет делиться на 9, и само число тоже.
Количество цифр в этом числе 4*9 = 36.
6) Сегодня среда. Послезавтра будет пятница.
День, когда "послезавтра" станет "вчера" - это суббота.
День, когда "вчера" было "завтра" - это позавчера, в понедельник.
Понедельник и суббота одинаково далеки от воскресенья - на 1 день.