1) х ∈ ( -Б ; -0.1) ∪ ( 0.1 ; +Б )
2) у` = 300x² - 3
3) Ι х Ι > 0.1 и х² > 0.01 тождественно равны.
Объяснение:
1) у = 100х³ - 3х
у` = 300x² - 3
Дано условие: Производная функции у принимает положительные значения, то есть: у` > 0
Значит:
300x² - 3 > 0
300x² - 3 = 0
100х² - 1 = 0; х² = 0.01; х₁,₂ = ±0.1
Метод интервалов:
+ Ι - Ι +
° ° →
-0.1 0.1
х ∈ ( -∞ ; -0.1) ∪ ( 0.1 ; +∞ )
2) у` = 300x² - 3
3) Ι х Ι > 0.1
Решением данного неравенства с модулем будет система неравенств, в которой:
х > 0.1x < -0.1х ∈ ( -∞ ; -0.1) ∪ ( 0.1 ; +∞ ) , значит неравенства Ι х Ι > 0.1 и х² > 0.01 тождественно равны.
{ 4 x− y = 1
5x+ 3 y = 14 ⇒
{ y = 4 x − 1
5 x + 3 y = 14 ⇒
{ y = 4 x − 1
5 x+ 3 ( 4 x − 1 ) = 14 ⇒
{ y = 4 x − 1
17 x − 17 = 0 ⇒
{ y = 4 x − 1
x = 1 ⇒
{ y = 3 x = 1
y = 3 ; x = 1