y = 3Cosx + 2Sin²x - 1
Найдём производную :
y' = (Cosx)' + 2(Sin²x)' - 1' = - 3Sinx + 4SinxCosx
Приравняем производную к нулю :
- 3Sinx + 4SinxCosx = 0
Sinx(- 3 + 4Cosx) = 0
Sinx = 0
- 3 + 4Cosx = 0
Cosx = 0,75
Если Sinx = 0 , то Cosx = ± 1
1) Sinx = 0 ⇒ Cosx = - 1 ⇒
y = 3 * (- 1) + 2 * 0 - 1 = - 4 - наименьшее
2) Sinx = 0 ⇒ Cosx = 1 ⇒
y = 3 * 1 + 2 * 0 - 1 = 2
3) Cosx = 0,75 ⇒ Sin²x = 1 - Cos²x = 1 - 0,75² = 1 - 0,5625 = 0,4375
y = 3 * 0,75 + 2 * 0,4375 - 1 = 2,25 + 0,875 - 1 = 2,125 - наибольшее
ответ : наименьшее - 4 , наибольшее 2,125
Сын мог бы выполнить один всю работу за 60 дней, а отец за 15 дней
Объяснение:
Весь объём работы принимаем за 1 (единицу)
Пусть сын один может выполнить всю работу за х дней, а отец за у дней. Планировалось, что работая вместе, отец и сын смогут выполнить всю работу за 12 дней, значит, за 1 день они сделают 1/12 работы. Составим первое уравнение:
Сын работал 8 дней и за 8 дней сделал 8/х часть работы. Отец работал 8+5 =13 дней и за 13 дней сделал 13/у часть работы. Фактически вместе они выполнили весь объём работы = 1. Составляем второе уравнение:
Решаем систему уравнений:
Итак,сын мог бы выполнить один всю работу за 60 дней, а отец за 15 дней.