Так как EC - биссектриса, то: при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки: ищем длины сторон: для этого используем формулу находим координаты точки C: теперь определим вид треугольника для этого используем теорему косинусов: вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый. Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для DK и косинуса угла E: cosE<0 поэтому угол тупой и треугольник тупоугольный ответ: 1) 2) треугольник тупоугольный
Так как EC - биссектриса, то: при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки: ищем длины сторон: для этого используем формулу находим координаты точки C: теперь определим вид треугольника для этого используем теорему косинусов: вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый. Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для DK и косинуса угла E: cosE<0 поэтому угол тупой и треугольник тупоугольный ответ: 1) 2) треугольник тупоугольный
x=1,01
Б) 2x=2,18
x=1,09
В) 12x=24,66
x=2,055
Г) 9x=38,79
x=4,31
Д) 10,9x=109
x=10
Е) 11,9x=38,08
x=3,2