1)Чтобы уравнение имело 2 различных корня, дискриминант должен быть больше 0. ТОгда a=3; b=-2p; c=6-p. D=b^2-4ac=(-2p)^2 -4*3*(6-p)=4p^2-72+12p=4p^2+12p-72>0; p^2+3p-18>0;С метода интервалов получим(p-3)*(p+6)>0; p< - 6 U p > 3. p∈(-·бесконечность; - 6) U (3; +бесконечность). 2) Чтобы уравнение имело только один корень, дискриминант должен равняться нулю. Д=0 при р= -6 и при р =3. 3)Чтобы уравнение не имело корней, дискриминант должен быть меньше нуля. p^2+3p-18 <0; -6 < p < 3. p∈ ( -6; 3) 4) Хотя бы один корень, значит, или один или два корня, Поэтому объединим решения 1-го и 2-го случаев и получим ответ.x∈(-бесконечность ; -6] U [ 3 ; + бесконечность)
task/23485822 ---.---.---.---.---.--- При каких значениях параметра m уравнение mx-x+1=m^2: 1)имеет ровно один корень; 2) не имеет корней ; 3)имеет более одного корня?
mx-x+1=m² ; mx - x = m² -1 (m -1)*x =(m-1)*(m+1) 1) если m -1≠ 0 (т.е. m ≠ 1) _ровно один корень x =m+1 . 3) если m = 1 , то получится 0*x =0 ⇒x_любое число (уравнение имеет бесконечное число корней . 2) m ∈∅ ( уравнение при всех m имеет корень , иначе не существует такое значение m при котором уравнение не имел корень)
Другой пример (b-1)(b+1)x =(b-1)(b+2) 1) b ≠ ±1 один корень x =(b+2)/(b+1) 2) b= -1 * * * 0*x = -2 *** не имеет корней 3) b=1 * * * 0*x =0 * * * бесконечно много корней .
ТОгда a=3; b=-2p; c=6-p.
D=b^2-4ac=(-2p)^2 -4*3*(6-p)=4p^2-72+12p=4p^2+12p-72>0;
p^2+3p-18>0;С метода интервалов получим(p-3)*(p+6)>0;
p< - 6 U p > 3. p∈(-·бесконечность; - 6) U (3; +бесконечность).
2) Чтобы уравнение имело только один корень, дискриминант должен равняться нулю.
Д=0 при р= -6 и при р =3.
3)Чтобы уравнение не имело корней, дискриминант должен быть меньше нуля.
p^2+3p-18 <0;
-6 < p < 3. p∈ ( -6; 3)
4) Хотя бы один корень, значит, или один или два корня, Поэтому объединим решения 1-го и 2-го случаев и получим ответ.x∈(-бесконечность ; -6] U [ 3 ; + бесконечность)