М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Антонио789176
Антонио789176
12.10.2022 04:40 •  Алгебра

2.найти значение A и B 3. Решите систему неравенств :


Решишь сделаю лучшим ответом ​


2.найти значение A и B 3. Решите систему неравенств :Решишь сделаю лучшим ответом ​

👇
Открыть все ответы
Ответ:
даша3648
даша3648
12.10.2022

Неполные квадратные уравнения, к которых коэффициент c=0, то есть уравнение имеет вид ax²+bx=0.

Такие уравнения решаются разложением левой части уравнения на множители.

\[a{x^2} + bx = 0\]

Общий множитель x выносим за скобки:

\[x \cdot (ax + b) = 0\]

Это уравнение — типа «произведение равно нулю«. Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:

\[x = 0;ax + b = 0\]

Второе уравнение — линейное. Решаем его:

\[ax = - b\_\_\_\left| {:a} \right.\]

\[x = - \frac{b}{a}\]

Таким образом, неполное квадратное уравнение вида ax²+bx=0 имеет 2 корня,один из которых равен нулю, а второй — -b/a.

Примеры.

\[1){x^2} + 18x = 0\]

Общий множитель x выносим за скобки:

\[x \cdot (x + 18) = 0\]

ДОЛЖНО БЫТЬ ПРАВИЛЬНО

4,4(63 оценок)
Ответ:

x ∈{-2} ∪ [2;7]

Объяснение:

1)  Найдём нули функции у₁ = х²-5х-14:

х²-5х-14 = 0

х₁,₂ = 5/2 ± √(25/4 +14) = 5/2 ± √(81/4) = 5/2 ± 9/2

х₁ = 5/2 + 9/2 = 14/2 = 7

х₂ = 5/2 - 9/2 = - 4/2 = -2

Графиком функции у₁ = х²-5х-14 является парабола, ветви которой направлены вверх; следовательно, у₁ = х²-5х-14 ≤0 на участке

x ∈ [-2; 7].

2) Неравенство х² ≥ 4 эквивалентно неравенству: х²- 4 ≥ 0.

Найдём нули функции у₂ =х²- 4:

х²- 4 = 0

х² = 4

х = ± √4

х₃ = - 2

х₄ = 2

Графиком функции у₂ = х²- 4 является парабола, ветви которой направлены вверх; функция у₂ = х²- 4 больше или равна нулю на участках:

x ∈(-∞; -2] ∪ [2;+∞)

3) Объединяем полученные решения, для чего на числовой оси отмечаем точки х₂ = -2; х₃ = -2;  х₄ = 2; х₁ = 7 и находим перекрываемые области значений, одновременно удовлетворяющие неравенству х²-5х-14 ≤ 0 и неравенству х² ≥ 4:

x ∈{-2} ∪ [2;7]

ответ: x ∈{-2} ∪ [2;7]

4,4(5 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ